Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

dist-snorm

Skew Normal Distribution


Description

Functions to compute density, distribution function, quantile function and to generate random variates for the skew normal distribution.

Usage

dsnorm(x, mean = 0, sd = 1, xi = 1.5, log = FALSE)
psnorm(q, mean = 0, sd = 1, xi = 1.5)
qsnorm(p, mean = 0, sd = 1, xi = 1.5)
rsnorm(n, mean = 0, sd = 1, xi = 1.5)

Arguments

mean, sd, xi

location parameter mean, scale parameter sd, skewness parameter xi.

n

the number of observations.

p

a numeric vector of probabilities.

x, q

a numeric vector of quantiles.

log

a logical; if TRUE, densities are given as log densities.

Value

d* returns the density, p* returns the distribution function, q* returns the quantile function, and r* generates random deviates,
all values are numeric vectors.

Author(s)

Diethelm Wuertz for the Rmetrics R-port.

References

Fernandez C., Steel M.F.J. (2000); On Bayesian Modelling of Fat Tails and Skewness, Preprint, 31 pages.

Examples

## snorm -
   # Ranbdom Numbers:
   par(mfrow = c(2, 2))
   set.seed(1953)
   r = rsnorm(n = 1000)
   plot(r, type = "l", main = "snorm", col = "steelblue")
   
   # Plot empirical density and compare with true density:
   hist(r, n = 25, probability = TRUE, border = "white", col = "steelblue")
   box()
   x = seq(min(r), max(r), length = 201)
   lines(x, dsnorm(x), lwd = 2)
   
   # Plot df and compare with true df:
   plot(sort(r), (1:1000/1000), main = "Probability", col = "steelblue",
     ylab = "Probability")
   lines(x, psnorm(x), lwd = 2)
   
   # Compute quantiles:
   round(qsnorm(psnorm(q = seq(-1, 5, by = 1))), digits = 6)

fGarch

Rmetrics - Autoregressive Conditional Heteroskedastic Modelling

v3042.83.2
GPL (>= 2)
Authors
Diethelm Wuertz [aut], Tobias Setz [cre], Yohan Chalabi [ctb], Chris Boudt [ctb], Pierre Chausse [ctb], Michal Miklovac [ctb]
Initial release
2017-11-12

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.