False Discorvery Rate (FDR)
Compute the False Discovery Rate for a vector of p-values and alpha value.
FDR(pvalues = NULL, alpha = 0.95, dep = 1) pvalue.FDR(pvalues = NULL, dep = 1)
pvalues |
Vector of p-values |
alpha |
Alpha value (level of significance). |
dep |
Parameter dependence test. By default |
FDR
method is used for multiple hypothesis testing to correct
problems of multiple contrasts.
If dep = 1
, the tests are
positively correlated, for example when many tests are the same contrast.
If dep < 1
the tests are negatively correlated.
Return:
out.FDR
=TRUE
. If there are significative
differences.
pv.FDR
p-value for False Discovery Rate test.
Febrero-Bande, M. and Oviedo de la Fuente, M.
Benjamini, Y., Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Annals of Statistics. 29 (4): 1165-1188. DOI:10.1214/aos/1013699998.
Function used in fanova.RPm
p=seq(1:50)/1000 FDR(p) pvalue.FDR(p) FDR(p,alpha=0.9999) FDR(p,alpha=0.9) FDR(p,alpha=0.9,dep=-1)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.