Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

S.np

Smoothing matrix by nonparametric methods


Description

Provides the smoothing matrix S for the discretization points tt

Usage

S.LLR(tt, h, Ker = Ker.norm, w = NULL, cv = FALSE)

S.LPR(tt, h, p = 1, Ker = Ker.norm, w = NULL, cv = FALSE)

S.LCR(tt, h, Ker = Ker.norm, w = NULL, cv = FALSE)

S.NW(tt, h = NULL, Ker = Ker.norm, w = NULL, cv = FALSE)

S.KNN(tt, h = NULL, Ker = Ker.unif, w = NULL, cv = FALSE)

Arguments

tt

Vector of discretization points or distance matrix mdist

h

Smoothing parameter or bandwidth. In S.KNN, number of k-nearest neighbors.

Ker

Type of kernel used, by default normal kernel.

w

Optional case weights.

cv

If TRUE, cross-validation is done.

p

Polynomial degree. be passed by default to create.basis

Details

Options:

  • Nadaraya-Watson kernel estimator (S.NW) with bandwidth parameter h.

  • Local Linear Smoothing (S.LLR) with bandwidth parameter h.

  • K nearest neighbors estimator (S.KNN) with parameter knn.

  • Polynomial Local Regression Estimator (S.LCR) with parameter of polynomial p and of kernel Ker.

  • Local Cubic Regression Estimator (S.LPR) with kernel Ker.

Value

Return the smoothing matrix S.

  • S.LLR return the smoothing matrix by Local Linear Smoothing.

  • S.NW return the smoothing matrix by Nadaraya-Watson kernel estimator.

  • S.KNN return the smoothing matrix by k nearest neighbors estimator.

  • S.LPR return the smoothing matrix by Local Polynomial Regression Estimator.

  • S.LCR return the smoothing matrix by Cubic Polynomial Regression.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@usc.es

References

Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis. Springer Series in Statistics, New York.

Wasserman, L. All of Nonparametric Statistics. Springer Texts in Statistics, 2006.

Opsomer, J. D., and Ruppert, D. (1997). Fitting a bivariate additive model by local polynomial regression. The Annals of Statistics, 25(1), 186-211.

See Also

See Also as S.basis

Examples

## Not run: 
  tt=1:101
  S=S.LLR(tt,h=5)
  S2=S.LLR(tt,h=10,Ker=Ker.tri)
  S3=S.NW(tt,h=10,Ker=Ker.tri)
  S4=S.KNN(tt,h=5,Ker=Ker.tri)
  par(mfrow=c(2,3))
  image(S)
  image(S2)
  image(S3)
  image(S4)
  S5=S.LPR(tt,h=10,p=1, Ker=Ker.tri)
  S6=S.LCR(tt,h=10,Ker=Ker.tri)
  image(S5)
  image(S6)

## End(Not run)

fda.usc

Functional Data Analysis and Utilities for Statistical Computing

v2.0.2
GPL-2
Authors
Manuel Febrero Bande [aut], Manuel Oviedo de la Fuente [aut, cre], Pedro Galeano [ctb], Alicia Nieto [ctb], Eduardo Garcia-Portugues [ctb]
Initial release
2020-02-17

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.