Functional classification using ML algotithms
Computes functional classification using functional (and non functional) explanatory variables by rpart, nnet, svm or random forest model
classif.nnet(formula, data, basis.x = NULL, weights = "equal", size, ...) classif.rpart( formula, data, basis.x = NULL, weights = "equal", type = "1vsall", ... ) classif.svm( formula, data, basis.x = NULL, weights = "equal", type = "1vsall", ... ) classif.ksvm(formula, data, basis.x = NULL, weights = "equal", ...) classif.randomForest( formula, data, basis.x = NULL, weights = "equal", type = "1vsall", ... ) classif.lda( formula, data, basis.x = NULL, weights = "equal", type = "1vsall", ... ) classif.qda( formula, data, basis.x = NULL, weights = "equal", type = "1vsall", ... ) classif.naiveBayes(formula, data, basis.x = NULL, laplace = 0, ...)
formula |
an object of class |
data |
List that containing the variables in the model. |
basis.x |
List of basis for functional explanatory data estimation. |
weights |
Weights:
|
size |
number of units in the hidden layer. Can be zero if there are skip-layer units. |
... |
Further arguments passed to or from other methods. |
type |
If type is |
laplace |
value used for Laplace smoothing (additive smoothing). Defaults to 0 (no Laplace smoothing). |
The first item in the data
list is called "df" and is a data
frame with the response and non functional explanatory variables, as
glm
.
Functional covariates of class fdata
or fd
are introduced in
the following items in the data
list.basis.x
is a list of
basis for represent each functional covariate. The b object can be
created by the function: create.pc.basis
, pca.fd
create.pc.basis
, create.fdata.basis
o
create.basis
.basis.b
is a list of basis for
represent each functional beta parameter. If basis.x
is a list of
functional principal components basis (see create.pc.basis
or
pca.fd
) the argument basis.b
is ignored.
Return classif
object plus:
formula
formula.
data
List that containing the variables in the model.
group
Factor of length n
group.est
Estimated vector groups
prob.classification
Probability of correct classification by group.
prob.group
Matrix of predicted class probabilities. For each
functional point shows the probability of each possible group membership.
max.prob
Highest probability of correct classification.
type
Type of classification scheme: 1 vs all or majority voting.
fit
list of binary classification fitted models.
Wrapper versions for multivariate and functional classification:
classif.lda
,classif.qda
: uses lda
and qda
functions and requires MASS
package.
classif.nnet
: uses nnet
function and requires nnet
package.
classif.rpart
: uses nnet
function and requires rpart
package.
classif.svm
,classif.naiveBayes
: uses svm
and naiveBayes
functions and requires e1071
package.
classif.ksvm
: uses weighted.ksvm
function and requires personalized
package.
classif.randomForest
: uses randomForest
function and requires randomForest
package.
Febrero-Bande, M. and Oviedo de la Fuente, M.
Ramsay, James O., and Silverman, Bernard W. (2006), Functional Data Analysis, 2nd ed., Springer, New York.
McCullagh and Nelder (1989), Generalized Linear Models 2nd ed. Chapman and Hall.
Venables, W. N. and Ripley, B. D. (2002) Modern Applied Statistics with S, New York: Springer. Regression for R. R News 1(2):20-25
See Also as: rpart
.
Alternative method:
classif.np
, classif.glm
,
classif.gsam
and classif.gkam
.
## Not run: data(phoneme) mlearn<-phoneme[["learn"]] glearn<-phoneme[["classlearn"]] mtest<-phoneme[["test"]] gtest<-phoneme[["classtest"]] dataf<-data.frame(glearn) dat=list("df"=dataf,"x"=mlearn) a1<-classif.rpart(glearn~x,data=dat) summary(a1) newdat<-list("x"=mtest) p1<-predict(a1,newdat,type="class") table(gtest,p1) sum(p1==gtest)/250 ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.