Kernel Classifier from Functional Data
Fits Nonparametric Supervised Classification for Functional Data.
classif.np( group, fdataobj, h = NULL, Ker = AKer.norm, metric, weights = "equal", type.S = S.NW, par.S = list(), ... ) classif.knn( group, fdataobj, knn = NULL, metric, weights = "equal", par.S = list(), ... ) classif.kernel( group, fdataobj, h = NULL, Ker = AKer.norm, metric, weights = "equal", par.S = list(), ... )
group |
Factor of length n |
fdataobj |
|
h |
Vector of smoothing parameter or bandwidth. |
Ker |
Type of kernel used. |
metric |
Metric function, by default |
weights |
weights. |
type.S |
Type of smothing matrix |
par.S |
List of parameters for |
... |
Arguments to be passed for |
knn |
Vector of number of nearest neighbors considered. |
Make the group classification of a training dataset using kernel or KNN
estimation: Kernel
.
Different types of metric funtions can
be used.
fdataobj fdata
class object.
group Factor of length n
.
group.est Estimated vector groups
prob.group Matrix of predicted class probabilities. For each functional point shows the probability of each possible group membership.
max.prob Highest probability of correct classification.
h.opt Optimal smoothing parameter or bandwidht estimated.
D Matrix of distances of the optimal quantile distance hh.opt
.
prob.classification Probability of correct classification by group.
misclassification Vector of probability of misclassification by
number of neighbors knn
.
h Vector of smoothing parameter or bandwidht.
C A call of function classif.kernel
.
If fdataobj
is a data.frame the function considers the case of
multivariate covariates. metric.dist
function is used to
compute the distances between the rows of a data matrix (as
dist
function.
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@usc.es
Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis. Springer Series in Statistics, New York.
Ferraty, F. and Vieu, P. (2006). NPFDA in practice. Free access on line at http://www.lsp.ups-tlse.fr/staph/npfda/
See Also as predict.classif
## Not run: data(phoneme) mlearn<-phoneme[["learn"]] glearn<-phoneme[["classlearn"]] h=9:19 out=classif.np(glearn,mlearn,h=h) summary(out) # round(out$prob.group,4) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.