Provides the depth measure for a list of p–functional data objects
This function computes the depth measure for a list of p–functional data objects. The procedure extends the Fraiman and Muniz (FM), modal, and random project depth functions from 1 functional dataset to p functional datasets.
depth.modep( mfdata, mfdataref = mfdata, h = NULL, metric, par.metric = list(), method = "euclidean", scale = FALSE, trim = 0.25, draw = FALSE, ask = FALSE ) depth.RPp( mfdata, mfdataref = mfdata, nproj = 50, proj = "vexponential", trim = 0.25, dfunc = "mdepth.TD", par.dfunc = list(scale = TRUE), draw = FALSE, ask = FALSE ) depth.FMp( mfdata, mfdataref = mfdata, trim = 0.25, dfunc = "mdepth.MhD", par.dfunc = list(scale = FALSE), draw = FALSE, ask = FALSE, ... )
mfdata |
A list of new curves (list of fdata ojects) to evaluate the depth. |
mfdataref |
A set of reference curves (list of fdata ojects) w.r.t. the depth of mfdata is computed. |
h |
Bandwidth, |
metric |
Metric or semi–metric function used for compute the distance
between each element in |
par.metric |
list of parameters for the metric function. |
method |
Type of the distance measure (by default |
scale |
=TRUE, scale the depth. |
trim |
The alpha of the trimming. |
draw |
=TRUE, draw the curves, the sample median and trimmed mean. |
ask |
logical. If |
nproj |
The number projection. |
proj |
if is a character: create the random projection using a covariance matrix by process indicated in the argument (by default, proj=1, sigma=diag(ncol(fdataobj))), else if is a matrix of random projection provided by the user. |
dfunc |
Type of multivariate depth (of order p) function used in
Framiman and Muniz depth,
|
par.dfunc |
list of parameters for the |
... |
Further arguments passed to or from other methods. |
depth.FMp
, this procedure suposes that each
curve of the mfdataobj have the same support [0,T] (same argvals and
rangeval). The FMp depth is defined as: FM_i^p =\int Z_i^p(t)dt where
Z_i^p(t) is a p–variate depth of the vector
(x_i^1(t),...,x_i^p(t)) w.r.t. the sample
at t.
derivatives. In this case,note solo un dato funcional se reduce
depth.FM=depth.FM1
The depth.RPp
function calculates the depth in two
steps. It builds random projections for the each curve of the mfdata
w.r.t. each curve of the mfdataref
object. Then it applyes a
multivariate depth function specified in dfunc
argument to the set of
random projections. This procedure is a generalization of Random Projection
with derivatives (RPD) implemented in depth.RPD
function.
Now, the procedure computes a p-variate depth with the projections using the
p functional dataset.
The modal depth depth.modep
function calculates the
depth in three steps. First, the function calculates a suitable metrics or
semi–metrics m1,...,mp for each curve of the
mfdata
w.r.t. each curve in the mfdataref
object using the
metric
and par.metric
arguments, see metric.lp
or semimetric.NPFDA
for more details. Second, the function
uses the p–dimensional metrics to construct a new metric, specified
in method
argument, by default if method="euclidean"
, i.e.
m:=√(m1^2+...+mp^2). Finally, the
empirical h–depth is computed as:
\hat{f}(x)=1/N∑ K(m/h)
where x is dataset with p observed fucntional data, m is
a suitable metric or semi–metric, K(t) is an asymmetric kernel
function and h
is the bandwidth parameter.
lmed Index deepest element median
.
ltrim Index of curves with trimmed mean mtrim
.
dep Depth of each curve of fdataobj w.r.t. fdataori.
dfunc second depth function used as multivariate depth, see details section.
par.dfunc list of parameters for the dfunc depth function.
proj The projection value of each point on the curves.
dist Distance matrix between curves or functional data.
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@usc.es
Cuevas, A., Febrero-Bande, M. and Fraiman, R. (2007). Robust estimation and classification for functional data via projection-based depth notions. Computational Statistics 22, 3, 481-496. 10: 419-440. Statistical Computing in Functional Data Analysis: The R Package fda.usc.Journal of Statistical Software, 51(4), 1-28. http://www.jstatsoft.org/v51/i04/
See Also as Descriptive
.
## Not run: data(tecator) xx<-tecator$absorp xx1<-fdata.deriv(xx,1) lx<-list(xx=xx,xx=xx1) # Fraiman-Muniz Depth par.df<-list(scale =TRUE) out.FM1p=depth.FMp(lx,trim=0.1,draw=TRUE, par.dfunc = par.df) out.FM2p=depth.FMp(lx,trim=0.1,dfunc="mdepth.LD", par.dfunc = par.df, draw=TRUE) # Random Project Depth out.RP1p=depth.RPp(lx,trim=0.1,dfunc="mdepth.TD", draw=TRUE,par.dfunc = par.df) out.RP2p=depth.RPp(lx,trim=0.1,dfunc="mdepth.LD", draw=TRUE,par.dfunc = par.df) #Modal Depth out.mode1p=depth.modep(lx,trim=0.1,draw=T,scale=T) out.mode2p=depth.modep(lx,trim=0.1,method="manhattan", draw=T,scale=T) par(mfrow=c(2,3)) plot(out.FM1p$dep,out.FM2p$dep) plot(out.RP1p$dep,out.RP2p$dep) plot(out.mode1p$dep,out.mode2p$dep) plot(out.FM1p$dep,out.RP1p$dep) plot(out.RP1p$dep,out.mode1p$dep) plot(out.FM1p$dep,out.mode1p$dep) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.