Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

fdata2pls

Partial least squares components for functional data.


Description

Compute penalized partial least squares (PLS) components for functional data.

Usage

fdata2pls(fdataobj, y, ncomp = 2, lambda = 0, P = c(0, 0, 1), norm = TRUE, ...)

Arguments

fdataobj

fdata class object.

y

Scalar response with length n.

ncomp

The number of components to include in the model.

lambda

Amount of penalization. Default value is 0, i.e. no penalization is used.

P

If P is a vector: coefficients to define the penalty matrix object. By default P=c(0,0,1) penalizes the second derivative (curvature) or acceleration. If P is a matrix: the penalty matrix object.

norm

If TRUE the fdataobj are centered and scaled.

...

Further arguments passed to or from other methods.

Details

If norm=TRUE, computes the PLS by NIPALS algorithm and the Degrees of Freedom using the Krylov representation of PLS, see Kraemer and Sugiyama (2011).
If norm=FALSE, computes the PLS by Orthogonal Scores Algorithm and the Degrees of Freedom are the number of components ncomp, see Martens and Naes (1989).

Value

fdata2pls function return:

  • df degree of freedom

  • rotation fdata class object.

  • x Is true the value of the rotated data (the centred data multiplied by the rotation matrix) is returned.

  • fdataobj.cen The centered fdataobj object.

  • mean mean of fdataobj.

  • lVector of index of principal components.

  • C The matched call.

  • lambda Amount of penalization.

  • P Penalty matrix.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@usc.es

References

Kraemer, N., Sugiyama M. (2011). The Degrees of Freedom of Partial Least Squares Regression. Journal of the American Statistical Association. Volume 106, 697-705.

Febrero-Bande, M., Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1-28. http://www.jstatsoft.org/v51/i04/

Martens, H., Naes, T. (1989) Multivariate calibration. Chichester: Wiley.

See Also

Used in: fregre.pls, fregre.pls.cv. Alternative method: fdata2pc.

Examples

## Not run: 
n= 500;tt= seq(0,1,len=101)
x0<-rproc2fdata(n,tt,sigma="wiener")
x1<-rproc2fdata(n,tt,sigma=0.1)
x<-x0*3+x1
beta = tt*sin(2*pi*tt)^2
fbeta = fdata(beta,tt)
y<-inprod.fdata(x,fbeta)+rnorm(n,sd=0.1)
pls1=fdata2pls(x,y)
norm.fdata(pls1$rotation)

## End(Not run)

fda.usc

Functional Data Analysis and Utilities for Statistical Computing

v2.0.2
GPL-2
Authors
Manuel Febrero Bande [aut], Manuel Oviedo de la Fuente [aut, cre], Pedro Galeano [ctb], Alicia Nieto [ctb], Eduardo Garcia-Portugues [ctb]
Initial release
2020-02-17

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.