Fit Functional Linear Model Using Generalized Least Squares
This function fits a functional linear model using generalized least squares. The errors are allowed to be correlated and/or have unequal variances.
fregre.gls( formula, data, correlation = NULL, basis.x = NULL, basis.b = NULL, rn, lambda, weights = NULL, subset, method = c("REML", "ML"), control = list(), verbose = FALSE, criteria = "GCCV1", ... )
formula |
a two-sided linear formula object describing the model, with
the response on the left of a |
data |
an optional data frame containing the variables named in
|
correlation |
an optional |
basis.x |
List of basis for functional explanatory data estimation. |
basis.b |
List of basis for β(t) parameter estimation. |
rn |
List of Ridge parameter. |
lambda |
List of Roughness penalty parameter. |
weights |
an optional |
subset |
an optional expression indicating which subset of the rows of
|
method |
a character string. If |
control |
a list of control values for the estimation algorithm to
replace the default values returned by the function
|
verbose |
an optional logical value. If |
criteria |
GCCV criteria, see |
... |
some methods for this generic require additional arguments. None are used in this methodl. |
an object of class "gls"
representing the functional linear
model fit. Generic functions such as print
, plot
, and
summary
have methods to show the results of the fit.
See glsObject
for the components of the fit. The functions
resid
, coef
and fitted
, can be
used to extract some of its components.
Beside, the class(z) is "gls", "lm" and "fregre.lm" with the following
objects:
sr2
Residual variance.
Vp
Estimated covariance matrix for the parameters.
lambda
A roughness penalty.
basis.x
Basis used for fdata
or fd
covariates.
basis.b
Basis used for beta parameter estimation.
beta.l
List of estimated beta parameter of functional covariates.
data
List that containing the variables in the model.
formula
formula used in ajusted model.
formula.ini
formula in call.
W
inverse of covariance matrix
correlation
See glsObject for the components of the fit.
Oviedo de la Fuente, M., Febrero-Bande, M., Pilar Munoz, and Dominguez, A. Predicting seasonal influenza transmission using Functional Regression Models with Temporal Dependence. arXiv:1610.08718. https://arxiv.org/abs/1610.08718
## Not run: data(tecator) x=tecator$absorp.fdata x.d2<-fdata.deriv(x,nderiv=) tt<-x[["argvals"]] dataf=as.data.frame(tecator$y) # plot the response plot(ts(tecator$y$Fat)) nbasis.x=11;nbasis.b=7 basis1=create.bspline.basis(rangeval=range(tt),nbasis=nbasis.x) basis2=create.bspline.basis(rangeval=range(tt),nbasis=nbasis.b) basis.x=list("x.d2"=basis1) basis.b=list("x.d2"=basis2) ldata=list("df"=dataf,"x.d2"=x.d2) res.gls=fregre.gls(Fat~x.d2,data=ldata, correlation=corAR1(), basis.x=basis.x,basis.b=basis.b) summary(res.gls) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.