Fit of Functional Generalized Least Squares Model Iteratively
This function fits iteratively a functional linear model using generalized least squares. The errors are allowed to be correlated and/or have unequal variances.
Begin with a preliminary estimation of \hat{θ}=θ_0 (for instance, θ_0=0). Compute \hat{W}.
Estimate b_Σ =(Z'\hat{W}Z)^{-1}Z'\hat{W}y
Based on the residuals, \hat{e}=≤ft(y-Zb_Σ \right), update \hat{θ}=ρ≤ft({\hat{e}}\right) where ρ depends on the dependence structure chosen.
Repeats steps 2 and 3 until convergence (small changes in b_Σ and/or \hat{θ}).
fregre.igls( formula, data, basis.x = NULL, basis.b = NULL, correlation, maxit = 100, rn, lambda, weights = rep(1, n), control, ... )
formula |
A two-sided linear formula object describing the
model, with the response on the left of a |
data |
An optional data frame containing the variables named in
|
basis.x |
List of basis for functional explanatory data estimation. |
basis.b |
List of basis for β(t) parameter estimation. |
correlation |
an optional |
maxit |
Number of maximum of interactions. |
rn |
List of Ridge parameter. |
lambda |
List of Roughness penalty parameter. |
weights |
An optional |
control |
Control parameters. |
... |
Further arguments passed to or from other methods. |
An object of class "gls"
representing the functional linear model
fit. Generic functions such as print
, plot
, and summary
have
methods to show the results of the fit.
sr2 Residual variance.
Vp Estimated covariance matrix for the parameters.
lambda A roughness penalty.
basis.x Basis used for fdata
or fd
covariates.
basis.b Basis used for beta parameter estimation.
beta.l List of estimated beta parameter of functional covariates.
data List that containing the variables in the model.
formula formula used in ajusted model.
formula.ini formula in call.
XX desing matrix
W inverse of covariance matrix
fdataob
rn rn
vs.list
correlation See glsObject for the components of the fit.
Oviedo de la Fuente, M., Febrero-Bande, M., Pilar Munoz, and Dominguez, A. Predicting seasonal influenza transmission using Functional Regression Models with Temporal Dependence. arXiv:1610.08718. https://arxiv.org/abs/1610.08718
## Not run: data(tecator) x=tecator$absorp.fdata x.d2<-fdata.deriv(x,nderiv=) tt<-x[["argvals"]] dataf=as.data.frame(tecator$y) # plot the response plot(ts(tecator$y$Fat)) ldata=list("df"=dataf,"x.d2"=x.d2) res.gls=fregre.igls(Fat~x.d2,data=ldata, correlation=list("cor.ARMA"=list()), control=list("p"=1)) res.gls res.gls$corStruct ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.