Cross-validation functional regression with scalar response using kernel estimation.
Computes functional regression between functional explanatory variables and scalar response using asymmetric kernel estimation by cross-validation method.
fregre.np.cv( fdataobj, y, h = NULL, Ker = AKer.norm, metric = metric.lp, type.CV = GCV.S, type.S = S.NW, par.CV = list(trim = 0), par.S = list(w = 1), ... )
fdataobj |
|
y |
Scalar response with length |
h |
Bandwidth, |
Ker |
Type of asymmetric kernel used, by default asymmetric normal kernel. |
metric |
Metric function, by default |
type.CV |
Type of cross-validation. By default generalized
cross-validation |
type.S |
Type of smothing matrix |
par.CV |
List of parameters for |
par.S |
List of parameters for |
... |
Arguments to be passed for |
The non-parametric functional regression model can be written as follows
y_i =r(X_i) + ε_i
where the unknown smooth real function r is estimated using kernel estimation by means of
\hat{r}(X)=\frac{∑_{i=1}^{n}{K(h^{-1}d(X,X_{i}))y_{i}}}{∑_{i=1}^{n}{K(h^{-1}d(X,X_{i}))}}
where K is an kernel function (see Ker
argument), h
is
the smoothing parameter and d is a metric or a semi-metric (see
metric
argument).
The function estimates the value of smoothing parameter or the bandwidth
through the cross validation methods: GCV.S
or
CV.S
. It computes the distance between curves using the
metric.lp
, although any other semimetric could be used (see
semimetric.basis
or semimetric.NPFDA
functions).
Different asymmetric kernels can be used, see
Kernel.asymmetric
.
Return:
call
The matched call.
residuals
y
minus fitted values
.
fitted.values
Estimated scalar response.
df
The residual degrees of freedom.
r2
Coefficient of determination.
sr2
Residual variance.
H
Hat matrix.
y
Response.
fdataobj
Functional explanatory data.
mdist
Distance matrix between x
and newx
.
Ker
Asymmetric kernel used.
gcv
CV or GCV values.
h.opt
smoothing parameter or bandwidth that minimizes CV or GCV method.
h
Vector of smoothing parameter or bandwidth.
cv
List with the fitted values and residuals estimated by CV, without the same curve.
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@usc.es
Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis. Springer Series in Statistics, New York.
Hardle, W. Applied Nonparametric Regression. Cambridge University Press, 1994.
Febrero-Bande, M., Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1-28. http://www.jstatsoft.org/v51/i04/
See Also as: fregre.np
,
summary.fregre.fd
and predict.fregre.fd
.
Alternative method: fregre.basis.cv
and
fregre.np.cv
.
## Not run: data(tecator) absorp=tecator$absorp.fdata ind=1:129 x=absorp[ind,] y=tecator$y$Fat[ind] Ker=AKer.tri res.np=fregre.np.cv(x,y,Ker=Ker) summary(res.np) res.np2=fregre.np.cv(x,y,type.CV=GCV.S,criteria="Shibata") summary(res.np2) ## Example with other semimetrics (not run) res.pca1=fregre.np.cv(x,y,Ker=Ker,metric=semimetric.pca,q=1) summary(res.pca1) res.deriv=fregre.np.cv(x,y,Ker=Ker,metric=semimetric.deriv) summary(res.deriv) x.d2=fdata.deriv(x,nderiv=1,method="fmm",class.out='fdata') res.deriv2=fregre.np.cv(x.d2,y,Ker=Ker) summary(res.deriv2) x.d3=fdata.deriv(x,nderiv=1,method="bspline",class.out='fdata') res.deriv3=fregre.np.cv(x.d3,y,Ker=Ker) summary(res.deriv3) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.