Functional influence measures
Once estimated the functional regression model with scalar response, influence.fregre.fd function is used to obtain the functional influence measures.
## S3 method for class 'fregre.fd' influence(model, ...)
model |
|
... |
Further arguments passed to or from other methods. |
Identify influential observations in the functional linear model in which
the predictor is functional and the response is scalar.
Three statistics are introduced for measuring the influence: Distance Cook Prediction
DCP
, Distance Cook Estimation DCE
and Distance
DP
respectively.
Return:
DCP
Cook's Distance for Prediction.
DCE
Cook's Distance for Estimation.
DP
Distance.
influence.fdata deprecated.
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@usc.es
Febrero-Bande, M., Galeano, P. and Gonzalez-Manteiga, W. (2010). Measures of influence for the functional linear model with scalar response. Journal of Multivariate Analysis 101, 327-339.
Febrero-Bande, M., Oviedo de la Fuente, M. (2012). Statistical Computing in Functional Data Analysis: The R Package fda.usc. Journal of Statistical Software, 51(4), 1-28. http://www.jstatsoft.org/v51/i04/
See Also as: fregre.pc
, fregre.basis
,
influence_quan
## Not run: data(tecator) x=tecator$absorp.fdata[1:129] y=tecator$y$Fat[1:129] res1=fregre.pc(x,y,1:5) # time consuming res.infl1=influence(res1) res2=fregre.basis(x,y) res.infl2=influence(res2) res<-res1 res.infl<-res.infl1 mat=cbind(y,res$fitted.values,res.infl$DCP,res.infl$DCE,res.infl$DP) colnames(mat)=c("Resp.","Pred.","DCP","DCE","DP") pairs(mat) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.