Compute the Hausdorff distances between two curves.
Hausdorff distance is the greatest of all the distances from a point in one curve to the closest point in the other curve (been closest the euclidean distance).
metric.hausdorff(fdata1, fdata2 = fdata1)
fdata1 |
Curves 1 of |
fdata2 |
Curves 2 of |
Let G(X)={(t,X(t)) \in R^2} and G(Y)={(s,Y(s)) \in R^2} be two graphs of the considered curves X and Y respectively, the Hausdorff distance d_H(X, Y) is defined as,
d_H(X,Y)=max{sup_{x\in G(X)} inf_{y\in G(Y)}d_2(x,y),sup_{y\in G(Y)} inf_{x\in G(X)}d_2(x,y)},
where d_2(x,y) is the euclidean distance, see metric.lp.
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@usc.es
## Not run: data(poblenou) nox<-poblenou$nox[1:6] # Hausdorff vs maximum distance out1<-metric.hausdorff(nox) out2<-metric.lp(nox,lp=0) out1 out2 par(mfrow=c(1,3)) plot(nox) plot(hclust(as.dist(out1))) plot(hclust(as.dist(out2))) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.