Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

norm.fdata

Approximates Lp-norm for functional data.


Description

Approximates Lp-norm for functional data (fdata) object using metric or semimetric functions. Norm for functional data using by default Lp-metric.

Usage

norm.fdata(fdataobj, metric = metric.lp, ...)

norm.fd(fdobj)

Arguments

fdataobj

fdata class object.

metric

Metric function, by default metric.lp.

...

Further arguments passed to or from other methods.

fdobj

Functional data or curves of fd class.

Details

By default it computes the L2-norm with p = 2 and weights w with length=(m-1).

The observed points on each curve are equally spaced (by default) or not.

Author(s)

Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@usc.es

See Also

See also metric.lp and norm
Alternative method: inprod of fda-package

Examples

## Not run: 
x<-seq(0,2*pi,length=1001)
fx1<-sin(x)/sqrt(pi)
fx2<-cos(x)/sqrt(pi)
argv<-seq(0,2*pi,len=1001)
fdat0<-fdata(rep(0,len=1001),argv,range(argv))
fdat1<-fdata(fx1,x,range(x))
metric.lp(fdat1)
metric.lp(fdat1,fdat0)
norm.fdata(fdat1)
# The same
integrate(function(x){(abs(sin(x)/sqrt(pi))^2)},0,2*pi)
integrate(function(x){(abs(cos(x)/sqrt(pi))^2)},0,2*pi)

bspl1<- create.bspline.basis(c(0,2*pi),21)
fd.bspl1 <- fd(basisobj=bspl1)
fd.bspl2<-fdata2fd(fdat1,nbasis=21)
norm.fd(fd.bspl1)
norm.fd(fd.bspl2)

## End(Not run)

fda.usc

Functional Data Analysis and Utilities for Statistical Computing

v2.0.2
GPL-2
Authors
Manuel Febrero Bande [aut], Manuel Oviedo de la Fuente [aut, cre], Pedro Galeano [ctb], Alicia Nieto [ctb], Eduardo Garcia-Portugues [ctb]
Initial release
2020-02-17

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.