Predictions from a functional gls object
The predictions for the functional generalized least squares fitted linear
model represented by object
are obtained at the covariate values
defined in newx
.
## S3 method for class 'fregre.gls' predict( object, newx = NULL, type = "response", se.fit = FALSE, scale = NULL, df, interval = "none", ... ) ## S3 method for class 'fregre.igls' predict( object, newx = NULL, data, df = df, weights = 1, pred.var, n.ahead = 1L, ... )
object |
|
newx |
An optional data list in which to look for variables with which to predict. If omitted, the fitted values are used. List of new explanatory data. |
type |
Type of prediction (response or model term). |
se.fit |
=TRUE (not default) standard error estimates are returned for each prediction. |
scale |
Scale parameter for std.err. calculation. |
df |
Degrees of freedom for scale. |
interval |
Type of interval calculation. |
... |
Further arguments passed to or from other methods. |
data |
Data frame with the time or spatinal index |
weights |
variance weights for prediction. This can be a numeric vector or a one-sided model formula. In the latter case, it is interpreted as an expression evaluated in newdata |
pred.var |
the variance(s) for future observations to be assumed for
prediction intervals. See |
n.ahead |
number of steps ahead at which to predict. |
a vector with the predicted values.
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@usc.es
Oviedo de la Fuente, M., Febrero-Bande, M., Pilar Munoz, and Dominguez, A. Predicting seasonal influenza transmission using Functional Regression Models with Temporal Dependence. arXiv:1610.08718. https://arxiv.org/abs/1610.08718
## Not run: data(tecator) ind<-1:190 x <-fdata.deriv(tecator$absorp.fdata,nderiv=1) dataf=as.data.frame(tecator$y) dataf$itime <- 1:nrow(x) ldat=list("df"=dataf[ind,],"x"=x[ind]) newldat=list("df"=dataf[-ind,],"x"=x[-ind]) newy <- tecator$y$Fat[-ind] ff <- Fat ~ x res.lm <- fregre.lm(ff,data=ldat) summary(res.lm) res.gls <- fregre.gls(ff,data=ldat, correlation=corAR1()) summary(res.gls) par.cor <- list("cor.ARMA"=list("p"=1)) par.cor <- list("cor.ARMA"=list("index"=c("itime"),"p"=1)) res.igls <- fregre.igls(ff,data=ldat,correlation=par.cor) pred.lm <- predict(res.lm,newldat) pred.gls <- predict(res.gls,newldat) pred.igls <- predict(res.igls,newldat) mean((pred.lm-newldat$df$Fat)^2) mean((pred.gls-newldat$df$Fat)^2) mean((pred.igls-newldat$df$Fat)^2) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.