Simulate several random processes.
Simulate Functional Data from different processes: Ornstein Uhlenbeck, Brownian, Fractional Brownian, Gaussian or Exponential variogram.
rproc2fdata( n, t = NULL, mu = rep(0, length(t)), sigma = 1, par.list = list(scale = 1, theta = 0.2 * diff(rtt), H = 0.5), norm = FALSE, verbose = FALSE, ... )
n |
Number of functional curves to be generated. |
t |
Discretization points. |
mu |
|
sigma |
A positive-definite symmetric matrix,
Σ, specifying the covariance matrix among grid
points. If
|
par.list |
List of parameter to process, by default |
norm |
If |
verbose |
If |
... |
Further arguments passed to or from other methods. |
Return the functional random processes as a fdata
class
object.
Manuel Febrero-Bande, Manuel Oviedo de la Fuente manuel.oviedo@usc.es
## Not run: par(mfrow=c(3,2)) lent<-30 tt<-seq(0,1,len=lent) mu<-fdata(rep(0,lent),tt) plot(rproc2fdata(200,t=tt,sigma="OU",par.list=list("scale"=1))) plot(rproc2fdata(200,mu=mu,sigma="OU",par.list=list("scale"=1))) plot(rproc2fdata(200,t=tt,sigma="vexponential")) plot(rproc2fdata(200,t=tt,sigma=1:lent)) plot(rproc2fdata(200,t=tt,sigma="brownian")) plot(rproc2fdata(200,t=tt,sigma="wiener")) #plot(rproc2fdata(200,seq(0,1,len=30),sigma="oo")) # this is an error ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.