Proximities between functional data
Approximates semi-metric distances for functional data of class fdata
or fd
.
semimetric.basis( fdata1, fdata2 = fdata1, nderiv = 0, type.basis1 = NULL, nbasis1 = NULL, type.basis2 = type.basis1, nbasis2 = NULL, ... )
fdata1 |
Functional data 1 or curve 1. |
fdata2 |
Functional data 2 or curve 2. |
nderiv |
Order of derivation, used in |
type.basis1 |
Type of Basis for |
nbasis1 |
Number of Basis for |
type.basis2 |
Type of Basis for |
nbasis2 |
Number of Basis for |
... |
Further arguments passed to or from other methods. |
Approximates semi-metric distances for functional data of two fd
class objects. If functional data are not functional fd
class, the
semimetric.basis
function creates a basis to represent the functional
data, by default is used create.bspline.basis
and the
fdata
class object is converted to fd
class using the
Data2fd
.
The function calculates distances between the
derivative of order nderiv
of curves using deriv.fd
function.
Returns a proximities matrix between functional data.
Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis. Springer Series in Statistics, New York.
See also metric.lp
, semimetric.NPFDA
and deriv.fd
## Not run: data(phoneme) DATA1<-phoneme$learn[c(30:50,210:230)] DATA2<-phoneme$test[231:250] a1=semimetric.basis(DATA1,DATA2) a2=semimetric.basis(DATA1,DATA2,type.basis1="fourier", nbasis1=11, type.basis2="fourier",nbasis2=11) fd1 <- fdata2fd(DATA1) fd2 <- fdata2fd(DATA2) a3=semimetric.basis(fd1,fd2) a4=semimetric.basis(fd1,fd2,nderiv=1) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.