Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

bifdPar

Define a Bivariate Functional Parameter Object


Description

Functional parameter objects are used as arguments to functions that estimate functional parameters, such as smoothing functions like smooth.basis. A bivariate functional parameter object supplies the analogous information required for smoothing bivariate data using a bivariate functional data object $x(s,t)$. The arguments are the same as those for fdPar objects, except that two linear differential operator objects and two smoothing parameters must be applied, each pair corresponding to one of the arguments $s$ and $t$ of the bivariate functional data object.

Usage

bifdPar(bifdobj, Lfdobjs=int2Lfd(2), Lfdobjt=int2Lfd(2), lambdas=0, lambdat=0,
      estimate=TRUE)

Arguments

bifdobj

a bivariate functional data object.

Lfdobjs

either a nonnegative integer or a linear differential operator object for the first argument $s$.

If NULL, Lfdobjs depends on bifdobj[['sbasis']][['type']]:

  • bspline Lfdobjs <- int2Lfd(max(0, norder-2)), where norder = norder(bifdobj[['sbasis']]).

  • fourier Lfdobjs = a harmonic acceleration operator:

    Lfdobj <- vec2Lfd(c(0,(2*pi/diff(rngs))^2,0), rngs)

    where rngs = bifdobj[['sbasis']][['rangeval']].

  • anything elseLfdobj <- int2Lfd(0)

Lfdobjt

either a nonnegative integer or a linear differential operator object for the first argument $t$.

If NULL, Lfdobjt depends on bifdobj[['tbasis']][['type']]:

  • bspline Lfdobj <- int2Lfd(max(0, norder-2)), where norder = norder(bifdobj[['tbasis']]).

  • fourier Lfdobj = a harmonic acceleration operator:

    Lfdobj <- vec2Lfd(c(0,(2*pi/diff(rngt))^2,0), rngt)

    where rngt = bifdobj[['tbasis']][['rangeval']].

  • anything elseLfdobj <- int2Lfd(0)

lambdas

a nonnegative real number specifying the amount of smoothing to be applied to the estimated functional parameter $x(s,t)$ as a function of $s$..

lambdat

a nonnegative real number specifying the amount of smoothing to be applied to the estimated functional parameter $x(s,t)$ as a function of $t$..

estimate

not currently used.

Value

a bivariate functional parameter object (i.e., an object of class bifdPar), which is a list with the following components:

bifd

a functional data object (i.e., with class bifd)

Lfdobjs

a linear differential operator object (i.e., with class Lfdobjs)

Lfdobjt

a linear differential operator object (i.e., with class Lfdobjt)

lambdas

a nonnegative real number

lambdat

a nonnegative real number

estimate

not currently used

Source

Ramsay, James O., Hooker, Giles, and Graves, Spencer (2009) Functional Data Analysis in R and Matlab, Springer, New York.

Ramsay, James O., and Silverman, Bernard W. (2005), Functional Data Analysis, 2nd ed., Springer, New York.

Ramsay, James O., and Silverman, Bernard W. (2002), Applied Functional Data Analysis, Springer, New York

See Also

Examples

#See the prediction of precipitation using temperature as
#the independent variable in the analysis of the daily weather
#data, and the analysis of the Swedish mortality data.

fda

Functional Data Analysis

v5.1.9
GPL (>= 2)
Authors
J. O. Ramsay <ramsay@psych.mcgill.ca> [aut,cre], Spencer Graves <spencer.graves@effectivedefense.org> [ctb], Giles Hooker <gjh27@cornell.edu> [ctb]
Initial release
2020-12-16

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.