Values of a Functional Data Object
Evaluate a functional data object at specified argument values, or evaluate a derivative or the result of applying a linear differential operator to the functional object.
eval.fd(evalarg, fdobj, Lfdobj=0, returnMatrix=FALSE) ## S3 method for class 'fd' predict(object, newdata=NULL, Lfdobj=0, returnMatrix=FALSE, ...) ## S3 method for class 'fdPar' predict(object, newdata=NULL, Lfdobj=0, returnMatrix=FALSE, ...) ## S3 method for class 'fdSmooth' predict(object, newdata=NULL, Lfdobj=0, returnMatrix=FALSE, ...) ## S3 method for class 'fdSmooth' fitted(object, returnMatrix=FALSE, ...) ## S3 method for class 'fdSmooth' residuals(object, returnMatrix=FALSE, ...)
evalarg, newdata |
a vector or matrix of argument values at which the functional data object is to be evaluated. If a matrix with more than one column, the number of columns must match ncol(dfobj[['coefs']]). |
fdobj |
a functional data object to be evaluated. |
Lfdobj |
either a nonnegative integer or a linear differential operator object. If present, the derivative or the value of applying the operator is evaluated rather than the functions themselves. |
object |
an object of class |
returnMatrix |
logical: Should a 2-dimensional array to be returned using a special class from the Matrix package if appropriate? |
... |
optional arguments for |
eval.fd
evaluates Lfdobj
of fdobj
at
evalarg
.
predict.fd
is a convenience wrapper for
eval.fd
. If newdata
is NULL and
fdobj[['basis']][['type']]
is bspline
, newdata
=
unique(knots(fdojb,interior=FALSE))
; otherwise, newdata
= fdobj[['basis']][['rangeval']]
.
predict.fdSmooth
, fitted.fdSmooth
and
residuals.fdSmooth
are other wrappers for eval.fd
.
an array of 2 or 3 dimensions containing the function
values. The first dimension corresponds to the argument values in
evalarg
,
the second to replications, and the third if present to functions.
Soren Hosgaard wrote an initial version of predict.fdSmooth
,
fitted.fdSmooth
, and residuals.fdSmooth
.
## ## eval.fd ## # set up the fourier basis daybasis <- create.fourier.basis(c(0, 365), nbasis=65) # Make temperature fd object # Temperature data are in 12 by 365 matrix tempav # See analyses of weather data. # Set up sampling points at mid days # Convert the data to a functional data object tempfd <- smooth.basis(day.5, CanadianWeather$dailyAv[,,"Temperature.C"], daybasis)$fd # set up the harmonic acceleration operator Lbasis <- create.constant.basis(c(0, 365)) Lcoef <- matrix(c(0,(2*pi/365)^2,0),1,3) bfdobj <- fd(Lcoef,Lbasis) bwtlist <- fd2list(bfdobj) harmaccelLfd <- Lfd(3, bwtlist) # evaluate the value of the harmonic acceleration # operator at the sampling points Ltempmat <- eval.fd(day.5, tempfd, harmaccelLfd) # Confirm that it still works with # evalarg = a matrix with only one column # when fdobj[['coefs']] is a matrix with multiple columns Ltempmat. <- eval.fd(matrix(day.5, ncol=1), tempfd, harmaccelLfd) # confirm that the two answers are the same all.equal(Ltempmat, Ltempmat.) # Plot the values of this operator matplot(day.5, Ltempmat, type="l") ## ## predict.fd ## predict(tempfd) # end points only at 35 locations str(predict(tempfd, day.5)) # 365 x 35 matrix str(predict(tempfd, day.5, harmaccelLfd)) # cublic splie with knots at 0, .5, 1 bspl3 <- create.bspline.basis(c(0, .5, 1)) plot(bspl3) # 5 bases fd.bspl3 <- fd(c(0, 0, 1, 0, 0), bspl3) pred3 <- predict(fd.bspl3) pred3. <- matrix(c(0, .5, 0), 3) dimnames(pred3.) <- list(NULL, 'reps 1') all.equal(pred3, pred3.) pred.2 <- predict(fd.bspl3, c(.2, .8)) pred.2. <- matrix(.176, 2, 1) dimnames(pred.2.) <- list(NULL, 'reps 1') all.equal(pred.2, pred.2.) ## ## predict.fdSmooth ## lipSm9 <- smooth.basisPar(liptime, lip, lambda=1e-9)$fd plot(lipSm9) ## ## with evalarg of class Date and POSIXct ## # Date July4.1776 <- as.Date('1776-07-04') Apr30.1789 <- as.Date('1789-04-30') AmRev <- c(July4.1776, Apr30.1789) BspRevolution <- create.bspline.basis(AmRev) AmRevYears <- seq(July4.1776, Apr30.1789, length.out=14) (AmRevLinear <- as.numeric(AmRevYears-July4.1776)) fitLin <- smooth.basis(AmRevYears, AmRevLinear, BspRevolution) AmPred <- predict(fitLin, AmRevYears) # POSIXct AmRev.ct <- as.POSIXct1970(c('1776-07-04', '1789-04-30')) BspRev.ct <- create.bspline.basis(AmRev.ct) AmRevYrs.ct <- seq(AmRev.ct[1], AmRev.ct[2], length.out=14) (AmRevLin.ct <- as.numeric(AmRevYrs.ct-AmRev.ct[2])) fitLin.ct <- smooth.basis(AmRevYrs.ct, AmRevLin.ct, BspRev.ct) AmPred.ct <- predict(fitLin.ct, AmRevYrs.ct)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.