Evaluate Monomial Roughness Penalty Matrix
The roughness penalty matrix is the set of inner products of all pairs of a derivative of integer powers of the argument.
monomialpen(basisobj, Lfdobj=int2Lfd(2), rng=basisobj$rangeval)
basisobj |
a monomial basis object. |
Lfdobj |
either a nonnegative integer specifying an order of derivative or a linear differential operator object. |
rng |
the inner product may be computed over a range that is contained within the range defined in the basis object. This is a vector or length two defining the range. |
a symmetric matrix of order equal to the number of monomial basis functions.
## ## set up a monomial basis for the first five powers ## nbasis <- 5 basisobj <- create.monomial.basis(c(-1,1),nbasis) # evaluate the rougness penalty matrix for the # second derivative. penmat <- monomialpen(basisobj, 2) ## ## with rng of class Date and POSIXct ## # Date invasion1 <- as.Date('1775-09-04') invasion2 <- as.Date('1812-07-12') earlyUS.Canada <- c(invasion1, invasion2) BspInvade1 <- create.monomial.basis(earlyUS.Canada) invadmat <- monomialpen(BspInvade1) # POSIXct AmRev.ct <- as.POSIXct1970(c('1776-07-04', '1789-04-30')) BspRev1.ct <- create.monomial.basis(AmRev.ct) revmat <- monomialpen(BspRev1.ct)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.