Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

ppBspline

Convert a B-spline function to piece-wise polynomial form


Description

The B-spline basis functions of order k = length(t) - 1 defined by the knot sequence in argument t each consist of polynomial segments with the same order joined end-to-end over the successive gaps in the knot sequence. This function computes the k coefficients of these polynomial segments in the rows of the output matrix coeff, with each row corresponding to a B-spline basis function that is positive over the interval spanned by the values in t. The elements of the output vector index indicate where in the sequence t we find the knots. Note that we assume t[1] < t[k+1], i.e. t is not a sequence of the same knot.

Usage

ppBspline(t)

Arguments

t

numeric vector = knot sequence of length norder+1 where norder = the order of the B-spline. The knot sequence must contain at least one gap.

Value

a list object containing components

Coeff

a matrix with rows corresponding to B-spline basis functions positive over the interval spanned by t and columns corresponding to the terms 1, x, x^2, ... in the polynomial representation.

index

indices indicating where in the sequence t the knots are to be found

See Also

Examples

ppBspline(1:5)

fda

Functional Data Analysis

v5.1.9
GPL (>= 2)
Authors
J. O. Ramsay <ramsay@psych.mcgill.ca> [aut,cre], Spencer Graves <spencer.graves@effectivedefense.org> [ctb], Giles Hooker <gjh27@cornell.edu> [ctb]
Initial release
2020-12-16

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.