Predict method for Functional Regression
Model predictions for object of class fRegress.
## S3 method for class 'fRegress'
predict(object, newdata=NULL, se.fit = FALSE,
interval = c("none", "confidence", "prediction"),
level = 0.95, ...)object |
Object of class inheriting from |
newdata |
Either NULL or a list matching object\$xfdlist. If(is.null(newdata)) predictions <- object\$yhatfdobj If newdata is a list, predictions = the sum of either newdata[i] * betaestfdlist[i] if object\$yfdobj has class or inprod(newdata[i], betaestfdlist[i]) if class(object\$yfdobj) =
|
se.fit |
a switch indicating if standard errors of predictions are required NOTE: se.fit = TRUE is NOT IMPLEMENTED YET. |
interval |
type of prediction (response or model term) NOTE: Only "intervale = 'none'" has been implemented so far. |
level |
Tolerance/confidence level |
... |
additional arguments for other methods |
1. Without newdata, fit <- object\$yhatfdobj.
2. With newdata, if(class(object\$y) == 'numeric'), fit <- sum
over i of inprod(betaestlist[i], newdata[i]). Otherwise, fit <- sum
over i of betaestlist[i] * newdata[i].
3. If(se.fit | (interval != 'none')) compute se.fit, then
return whatever is desired.
The predictions produced by predict.fRegress are either a
vector or a functional parameter (class fdPar) object, matching
the class of object\$y.
If interval is not "none", the predictions will be
multivariate for object\$y and the requested lwr and
upr bounds. If object\$y is a scalar, these predictions
are returned as a matrix; otherwise, they are a multivariate
functional parameter object (class fdPar).
If se.fit is TRUE, predict.fRegress returns a
list with the following components:
fit |
vector or matrix or univariate or multivariate functional parameter
object depending on the value of |
se.fit |
standard error of predicted means |
Spencer Graves
##
## vector response with functional explanatory variable
##
annualprec <- log10(apply(CanadianWeather$dailyAv[,,
"Precipitation.mm"], 2,sum))
smallbasis <- create.fourier.basis(c(0, 365), 25)
tempfd <- smooth.basis(day.5,
CanadianWeather$dailyAv[,,"Temperature.C"], smallbasis)$fd
precip.Temp.f <- fRegress(annualprec ~ tempfd)
precip.Temp.p <- predict(precip.Temp.f)
# plot response vs. fitted
plot(annualprec, precip.Temp.p)Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.