Carbon emissions and demographic covariables by country for 1999.
These data are a small subset of the demographic data compiled by the World Bank. The data has been restricted to 1999 and to countries with a population larger than 1 million. Also, only countries reporting all the covariables are included.
data(WorldBankCO2)
This a 75X5 matrix with the row names identifying countries and
columns the covariables:
"GDP.cap" "Pop.mid" "Pop.urb" "CO2.cap" "Pop"
GDP.cap: Gross domestic product (in US dollars) per capita.
Pop.mid: percentage of the population within the ages of 15 through 65.
Pop.urb: Precentage of the population living in an urban environment
CO2.cap: Equivalent CO2 emmissions per capita
Pop: Population
Romero-Lankao, P., J. L. Tribbia and D. Nychka (2008) Development and greenhouse gas emissions deviate from the modernization theory and convergence hypothesis. Cli- mate Research 38, 17-29.
Listed below are scripts to create this data set from spread sheet on the World Bank CDs:
## read in comma delimited spread sheet read.csv("climatedemo.csv", stringsAsFactors=FALSE)->hold ## convert numbers to matrix of data Ddata<- as.matrix( hold[,5:51] ) Ddata[Ddata==".."] <- NA ## still in character form parse as numeric Ddata<- matrix( as.numeric( Ddata), nrow=1248, ncol=ncol( Ddata), dimnames=list( NULL, format( 1960:2006) )) ## these are the factors indicating the different variables ### unique( Fac) gives the names of factors Fac<- as.character( hold[,1]) years<- 1960:2006 # create separate tables of data for each factor temp<- unique( Fac) ## also subset Country id and name Country.id<- as.character( hold[Fac== temp[1],3]) Country<- as.character( hold[Fac== temp[1],4]) Pop<- Ddata[ Fac== temp[2],] CO2<- Ddata[ Fac== temp[1],] Pop.mid<- Ddata[ Fac== temp[3],] GDP.cap<- Ddata[ Fac== temp[4],] Pop.urb<- Ddata[ Fac== temp[5],] CO2.cap<- CO2/Pop dimnames( Pop)<- list( Country.id,format(years)) dimnames( CO2)<- list( Country.id,format(years)) dimnames( Pop.mid)<- list( Country.id,format(years)) dimnames( Pop.urb)<- list( Country.id,format(years)) dimnames( CO2.cap)<- list( Country.id,format(years)) # delete temp data sets rm( temp) rm( hold) rm( Fac) # define year to do clustering. yr<- "1999" # variables for clustering combined as columns in a matrix temp<-cbind( GDP.cap[,yr], Pop.mid[,yr], Pop.urb[,yr],CO2[,yr],Pop[,yr]) # add column names and figure how many good data rows there are. dimnames( temp)<-list( Country, c("GDP.cap","Pop.mid","Pop.urb", "CO2.cap", "Pop")) good<-complete.cases(temp) good<- good & Pop[,yr] > 10e6 # subset with only the complete data rows WorldBankCO2<- temp[good,] save(WorldBankCO2, file="WorldBankCO2.rda")
data(WorldBankCO2) plot( WorldBankCO2[,"GDP.cap"], WorldBankCO2[,"CO2.cap"], log="xy")
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.