Fields internal and secondary functions
Listed below are supporting functions for the major methods in fields.
## S3 method for class 'spatialDesign' x[...] Krig.df.to.lambda(df, D, guess = 1, tol = 1e-05) Krig.fdf (llam, info) Krig.fgcv (lam, obj) Krig.fgcv.model (lam, obj) Krig.fgcv.one (lam, obj) Krig.flplike (lambda, obj) Krig.fs2hat (lam, obj) Krig.ftrace (lam, D) Krig.parameters (obj, mle.calc=obj$mle.calc) Krig.updateY (out, Y, verbose = FALSE, yM=NA) Krig.which.lambda(out) Krig.ynew (out, y=NULL, yM=NULL ) bisection.search (x1, x2, f, tol = 1e-07, niter = 25, f.extra = NA, upcross.level = 0) cat.matrix (mat, digits = 8) cat.to.list (x, a) ceiling2 (m) describe (x) double.exp(x) dyadic.2check( m,n,cut.p=2) dyadic.check( n,cut.p=2) Exp.earth.cov (x1, x2, theta = 1) fast.1way (lev, y, w = rep(1, length(y))) find.upcross (fun, fun.info, upcross.level = 0, guess = 1, tol = 1e-05) gauss.cov (...) golden.section.search (ax, bx, cx, f, niter = 25, f.extra = NA, tol = 1e-05, gridx=NA) imagePlotInfo (...,breaks, nlevel) imageplot.info(...) imageplot.setup(x, add=FALSE, legend.shrink = 0.9, legend.width = 1, horizontal = FALSE, legend.mar=NULL, bigplot = NULL, smallplot = NULL,...) makeSimulationGrid(mKrigObject, predictionPoints, nx, ny, nxSimulation, nySimulation, gridRefinement, gridExpansion) makeSimulationGrid2 (fastTpsObject, predictionPointsList, gridRefinement, gridExpansion) minimax.crit (obj, des = TRUE, R) ## S3 method for class 'spatialDesign' plot(x,...) ## S3 method for class 'interp.surface' predict(object, loc,...) ## S3 method for class 'surface' predict(object, ...) ## S3 method for class 'surface.default' predict(object, ...) ## S3 method for class 'spatialDesign' print(x,...) ## S3 method for class 'sreg' print(x, ...) ## S3 method for class 'summary.Krig' print(x, ...) ## S3 method for class 'summarySpatialDesign' print(x, digits = 4,...) ## S3 method for class 'summary.sreg' print(x, ...) printGCVWarnings( Table, method = "all") makePredictionPoints(mKrigObject, nx, ny, predictionPointsList) multWendlandGrid( grid.list,center, delta, coef, xy = c(1, 2)) qr.q2ty (qr, y) qr.yq2 (qr, y) ## S3 method for class 'qsreg' plot(x, pch = "*", main = NA,...) ## S3 method for class 'qsreg' predict(object, x, derivative = 0, model = object$ind.cv.ps,...) ## S3 method for class 'qsreg' print(x, ...) qsreg.fit (x, y, lam, maxit = 50, maxit.cv = 10, tol = 1e-04, offset = 0, sc = sqrt(var(y)) * 1e-07, alpha = 0.5, wt = rep(1, length(x)), cost = 1) qsreg.psi( r,alpha=.5,C=1) qsreg.rho( r,alpha=.5,C=1) qsreg.trace(x, y, lam, maxit = 50, maxit.cv = 10, tol = 1e-04, offset = 0, sc = sqrt(var(y)) * 1e-07, alpha = 0.5, wt = rep(1, length(x)), cost = 1) qsreg.rho.OLD(r, alpha = 0.5, C = 1) qsreg.psi.OLD(r, alpha = 0.5, C = 1) quickPrint(obj, max.values = 10) radbas.constant (m, d) sreg.df.to.lambda (df, x, wt, guess = 1, tol = 1e-05) sreg.fdf (h, info) sreg.fgcv (lam, obj) sreg.fgcv.model (lam, obj) sreg.fgcv.one (lam, obj) sreg.fit (lam, obj, verbose=FALSE) sreg.fs2hat (lam, obj) sreg.trace (h, info) summaryGCV.Krig(object, lambda, cost = 1, verbose = FALSE, offset = 0, y = NULL, ...) summaryGCV.sreg (object, lambda, cost = 1, nstep.cv = 20, offset = 0, verbose = TRUE,...) ## S3 method for class 'qsreg' summary(object, ...) ## S3 method for class 'spatialDesign' summary(object, digits = 4, ...) ## S3 method for class 'sreg' summary(object, digits = 4, ...) surface(object , ...) ## Default S3 method: surface(object, ...) unscale (x, x.center, x.scale) MLESpatialProcess.fast(x, y, lambda.start=.5, theta.start = NULL, cov.function = "stationary.cov", cov.args = list(Covariance = "Matern", smoothness = 1), Distance = "rdist", verbose=FALSE, optim.args=NULL, ...)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.