Aikake's an information criterion
This function computes the AIC (Aikake's, an information criterion) from a fixest
estimation.
## S3 method for class 'fixest' AIC(object, ..., k = 2)
The AIC is computed as:
AIC = -2\times LogLikelihood + k\times nbParams
with k the penalty parameter.
You can have more information on this criterion on AIC
.
It return a numeric vector, with length the same as the number of objects taken as arguments.
Laurent Berge
See also the main estimation functions femlm
, feols
or feglm
. Other statictics methods: BIC.fixest
, logLik.fixest
, nobs.fixest
.
# two fitted models with different expl. variables: res1 = femlm(Sepal.Length ~ Sepal.Width + Petal.Length + Petal.Width | Species, iris) res2 = femlm(Sepal.Length ~ Petal.Width | Species, iris) AIC(res1, res2) BIC(res1, res2)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.