Run Flexclust Algorithms Repeatedly
Runs clustering algorithms repeatedly for different numbers of clusters and returns the minimum within cluster distance solution for each.
stepFlexclust(x, k, nrep=3, verbose=TRUE, FUN = kcca, drop=TRUE, group=NULL, simple=FALSE, save.data=FALSE, seed=NULL, multicore=TRUE, ...) stepcclust(...) ## S4 method for signature 'stepFlexclust,missing' plot(x, y, type=c("barplot", "lines"), totaldist=NULL, xlab=NULL, ylab=NULL, ...) ## S4 method for signature 'stepFlexclust' getModel(object, which=1)
x, ... |
|
k |
A vector of integers passed in turn to the |
nrep |
For each value of |
FUN |
Cluster function to use, typically |
verbose |
If |
drop |
If |
group |
An optional grouping vector for the data, see
|
simple |
Return an object of class |
save.data |
Save a copy of |
seed |
If not |
multicore |
If |
y |
Not used. |
type |
Create a barplot or lines plot. |
totaldist |
Include value for 1-cluster solution in plot? Default
is |
xlab, ylab |
Graphical parameters. |
object |
Object of class |
which |
Number of model to get. If character, interpreted as number of clusters. |
stepcclust
is a simple wrapper for
stepFlexclust(...,FUN=cclust)
.
Friedrich Leisch
data("Nclus") plot(Nclus) ## multicore off for CRAN checks cl1 <- stepFlexclust(Nclus, k=2:7, FUN=cclust, multicore=FALSE) cl1 plot(cl1) # two ways to do the same: getModel(cl1, 4) cl1[[4]] opar <- par("mfrow") par(mfrow=c(2, 2)) for(k in 3:6){ image(getModel(cl1, as.character(k)), data=Nclus) title(main=paste(k, "clusters")) } par(opar)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.