Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

forecast.modelAR

Forecasting using user-defined model


Description

Returns forecasts and other information for user-defined models.

Usage

## S3 method for class 'modelAR'
forecast(
  object,
  h = ifelse(object$m > 1, 2 * object$m, 10),
  PI = FALSE,
  level = c(80, 95),
  fan = FALSE,
  xreg = NULL,
  lambda = object$lambda,
  bootstrap = FALSE,
  npaths = 1000,
  innov = NULL,
  ...
)

Arguments

object

An object of class "modelAR" resulting from a call to modelAR.

h

Number of periods for forecasting. If xreg is used, h is ignored and the number of forecast periods is set to the number of rows of xreg.

PI

If TRUE, prediction intervals are produced, otherwise only point forecasts are calculated. If PI is FALSE, then level, fan, bootstrap and npaths are all ignored.

level

Confidence level for prediction intervals.

fan

If TRUE, level is set to seq(51,99,by=3). This is suitable for fan plots.

xreg

Future values of external regressor variables.

lambda

Box-Cox transformation parameter. If lambda="auto", then a transformation is automatically selected using BoxCox.lambda. The transformation is ignored if NULL. Otherwise, data transformed before model is estimated.

bootstrap

If TRUE, then prediction intervals computed using simulations with resampled residuals rather than normally distributed errors. Ignored if innov is not NULL.

npaths

Number of sample paths used in computing simulated prediction intervals.

innov

Values to use as innovations for prediction intervals. Must be a matrix with h rows and npaths columns (vectors are coerced into a matrix). If present, bootstrap is ignored.

...

Additional arguments passed to simulate.nnetar

Details

Prediction intervals are calculated through simulations and can be slow. Note that if the model is too complex and overfits the data, the residuals can be arbitrarily small; if used for prediction interval calculations, they could lead to misleadingly small values.

Value

An object of class "forecast".

The function summary is used to obtain and print a summary of the results, while the function plot produces a plot of the forecasts and prediction intervals.

The generic accessor functions fitted.values and residuals extract useful features of the value returned by forecast.nnetar.

An object of class "forecast" is a list containing at least the following elements:

model

A list containing information about the fitted model

method

The name of the forecasting method as a character string

mean

Point forecasts as a time series

lower

Lower limits for prediction intervals

upper

Upper limits for prediction intervals

level

The confidence values associated with the prediction intervals

x

The original time series (either object itself or the time series used to create the model stored as object).

xreg

The external regressors used in fitting (if given).

residuals

Residuals from the fitted model. That is x minus fitted values.

fitted

Fitted values (one-step forecasts)

...

Other arguments

Author(s)

Rob J Hyndman and Gabriel Caceres

See Also


forecast

Forecasting Functions for Time Series and Linear Models

v8.14
GPL-3
Authors
Rob Hyndman [aut, cre, cph] (<https://orcid.org/0000-0002-2140-5352>), George Athanasopoulos [aut], Christoph Bergmeir [aut] (<https://orcid.org/0000-0002-3665-9021>), Gabriel Caceres [aut], Leanne Chhay [aut], Mitchell O'Hara-Wild [aut] (<https://orcid.org/0000-0001-6729-7695>), Fotios Petropoulos [aut] (<https://orcid.org/0000-0003-3039-4955>), Slava Razbash [aut], Earo Wang [aut], Farah Yasmeen [aut] (<https://orcid.org/0000-0002-1479-5401>), R Core Team [ctb, cph], Ross Ihaka [ctb, cph], Daniel Reid [ctb], David Shaub [ctb], Yuan Tang [ctb] (<https://orcid.org/0000-0001-5243-233X>), Zhenyu Zhou [ctb]
Initial release

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.