Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

neginc

Neg-entropy normality index for cluster validation


Description

Cluster validity index based on the neg-entropy distances of within-cluster distributions to normal distribution, see Lago-Fernandez and Corbacho (2010).

Usage

neginc(x,clustering)

Arguments

x

something that can be coerced into a numerical matrix. Euclidean dataset.

clustering

vector of integers with length =nrow(x); indicating the cluster for each observation.

Value

Index value, see Lago-Fernandez and Corbacho (2010). The lower (i.e., the more negative) the better.

Author(s)

References

Lago-Fernandez, L. F. and Corbacho, F. (2010) Normality-based validation for crisp clustering. Pattern Recognition 43, 782-795.

Examples

options(digits=3)
  iriss <- as.matrix(iris[c(1:10,51:55,101:105),-5])
  irisc <- as.numeric(iris[c(1:10,51:55,101:105),5])
  neginc(iriss,irisc)

fpc

Flexible Procedures for Clustering

v2.2-9
GPL
Authors
Christian Hennig <christian.hennig@unibo.it>
Initial release
2020-12-06

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.