Neg-entropy normality index for cluster validation
Cluster validity index based on the neg-entropy distances of within-cluster distributions to normal distribution, see Lago-Fernandez and Corbacho (2010).
neginc(x,clustering)
x |
something that can be coerced into a numerical matrix. Euclidean dataset. |
clustering |
vector of integers with length |
Index value, see Lago-Fernandez and Corbacho (2010). The lower (i.e., the more negative) the better.
Lago-Fernandez, L. F. and Corbacho, F. (2010) Normality-based validation for crisp clustering. Pattern Recognition 43, 782-795.
options(digits=3) iriss <- as.matrix(iris[c(1:10,51:55,101:105),-5]) irisc <- as.numeric(iris[c(1:10,51:55,101:105),5]) neginc(iriss,irisc)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.