Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

stupidkcentroids

Stupid k-centroids random clustering


Description

Picks k random centroids from given dataset and assigns every point to closest centroid. This is called stupid k-centroids in Hennig (2019).

Usage

stupidkcentroids(xdata, k, distances = inherits(xdata, "dist"))

Arguments

xdata

cases*variables data, dist-object or dissimilarity matrix, see distances.

k

integer. Number of clusters.

distances

logical. If TRUE, xdata is interpreted as distances.

Value

The clustering vector (values 1 to k, length number of objects behind xdata),

Author(s)

References

Hennig, C. (2019) Cluster validation by measurement of clustering characteristics relevant to the user. In C. H. Skiadas (ed.) Data Analysis and Applications 1: Clustering and Regression, Modeling-estimating, Forecasting and Data Mining, Volume 2, Wiley, New York 1-24, https://arxiv.org/abs/1703.09282

Akhanli, S. and Hennig, C. (2020) Calibrating and aggregating cluster validity indexes for context-adapted comparison of clusterings. Statistics and Computing, 30, 1523-1544, https://link.springer.com/article/10.1007/s11222-020-09958-2, https://arxiv.org/abs/2002.01822

See Also

Examples

set.seed(20000)
  options(digits=3)
  face <- rFace(200,dMoNo=2,dNoEy=0,p=2)
  stupidkcentroids(dist(face),3)

fpc

Flexible Procedures for Clustering

v2.2-9
GPL
Authors
Christian Hennig <christian.hennig@unibo.it>
Initial release
2020-12-06

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.