Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

fdGPH

Geweke and Porter-Hudak Estimator for ARFIMA(p,d,q)


Description

Estimate the fractional (or “memory”) parameter d in the ARFIMA(p,d,q) model by the method of Geweke and Porter-Hudak (GPH). The GPH estimator is based on the regression equation using the periodogram function as an estimate of the spectral density.

Usage

fdGPH(x, bandw.exp = 0.5)

Arguments

x

univariate time series

bandw.exp

the bandwidth used in the regression equation

Details

The function also provides the asymptotic standard deviation and the standard error deviation of the fractional estimator.

The bandwidth is bw = trunc(n ^ bandw.exp), where 0 < bandw.exp < 1 and n is the sample size. Default bandw.exp = 0.5.

Value

d

GPH estimate

sd.as

asymptotic standard deviation

sd.reg

standard error deviation

Author(s)

Valderio A. Reisen and Artur J. Lemonte

References

see those in fdSperio.

See Also

Examples

memory.long <- fracdiff.sim(1500, d = 0.3)
fdGPH(memory.long$series)

fracdiff

Fractionally Differenced ARIMA aka ARFIMA(P,d,q) Models

v1.5-1
GPL (>= 2)
Authors
Martin Maechler [aut, cre] (<https://orcid.org/0000-0002-8685-9910>), Chris Fraley [ctb, cph] (S original; Fortran code), Friedrich Leisch [ctb] (R port, <https://orcid.org/0000-0001-7278-1983>), Valderio Reisen [ctb] (fdGPH() & fdSperio()), Artur Lemonte [ctb] (fdGPH() & fdSperio()), Rob Hyndman [ctb] (residuals() & fitted(), <https://orcid.org/0000-0002-2140-5352>)
Initial release
2020-01-20

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.