Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

facf

Functional autocorrelation function


Description

Compute functional autocorrelation function at various lags

Usage

facf(fun_data, lag_value_range = seq(0, 20, by = 1))

Arguments

fun_data

A data matrix of dimension (n by p), where n denotes sample size; and p denotes dimensionality

lag_value_range

Lag value

Details

The autocovariance at lag i is estimated by the function \widehat{γ}_i(t,s), a functional analog of the autocorrelation is defined as

\widehat{ρ}_i = \frac{\|\widehat{γ}_i\|}{\int \widehat{γ}_0(t,t)dt}.

Value

A vector of functional autocorrelation function at various lags

Author(s)

Han Lin Shang

References

L. Horv\'ath, G. Rice and S. Whipple (2016) Adaptive bandwidth selection in the long run covariance estimator of functional time series, Computational Statistics and Data Analysis, 100, 676-693.

Examples

facf_value = facf(fun_data = t(ElNino_ERSST_region_1and2$y))

ftsa

Functional Time Series Analysis

v6.0
GPL-3
Authors
Rob Hyndman [aut] (<https://orcid.org/0000-0002-2140-5352>), Han Lin Shang [aut, cre, cph] (<https://orcid.org/0000-0003-1769-6430>)
Initial release
2020-11-29

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.