Estimating long-run covariance function for a functional time series
Bandwidth estimation in the long-run covariance function for a functional time series, using different types of kernel function
long_run_covariance_estimation(dat, C0 = 3, H = 3)
dat |
A matrix of p by n, where p denotes the number of grid points and n denotes sample size |
C0 |
A tuning parameter used in the adaptive bandwidth selection algorithm of Rice |
H |
A tuning parameter used in the adaptive bandwidth selection algorithm of Rice |
An estimated covariance function of size (p by p)
Han Lin Shang
L. Horvath, G. Rice and S. Whipple (2016) Adaptive bandwidth selection in the long run covariance estimation of functional time series, Computational Statistics and Data Analysis, 100, 676-693.
G. Rice and H. L. Shang (2017) A plug-in bandwidth selection procedure for long run covariance estimation with stationary functional time series, Journal of Time Series Analysis, 38(4), 591-609.
D. Li, P. M. Robinson and H. L. Shang (2018) Long-range dependent curve time series, Journal of the American Statistical Association: Theory and Methods, under revision.
dum = long_run_covariance_estimation(dat = ElNino_OISST_region_1and2$y[,1:5])
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.