Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

mftsc

Multiple funtional time series clustering


Description

Clustering the multiple functional time series. The function uses the functional panel data model to cluster different time series into subgroups

Usage

mftsc(X, alpha)

Arguments

X

A list of sets of smoothed functional time series to be clustered, for each object, it is a p x q matrix, where p is the sample size and q is the number of grid points of the function

alpha

A value input for adjusted rand index to measure similarity of the memberships with last iteration, can be any value big than 0.9

Details

As an initial step, conventional k-means clustering is performed on the dynamic FPC scores, then an iterative membership updating process is applied by fitting the MFPCA model.

Value

iteration

the number of iterations until convergence

memebership

a list of all the membership matrices at each iteration

member.final

the final membership

Author(s)

Chen Tang, Yanrong Yang and Han Lin Shang

See Also

Examples

## Not run: 
data(sim_ex_cluster)
cluster_result<-mftsc(X=sim_ex_cluster, alpha=0.99)
cluster_result$member.final

## End(Not run)

ftsa

Functional Time Series Analysis

v6.0
GPL-3
Authors
Rob Hyndman [aut] (<https://orcid.org/0000-0002-2140-5352>), Han Lin Shang [aut, cre, cph] (<https://orcid.org/0000-0003-1769-6430>)
Initial release
2020-11-29

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.