Add Gaussian white noise to functional data objects
This function generates an artificial noisy version of a functional data
object of class funData
(univariate) or
multiFunData
(multivariate) by adding iid. realizations
of Gaussian random variables \eps ~ N(0, σ^2) to the observations. The standard deviation
σ can be supplied by the user.
addError(funDataObject, sd)
funDataObject |
A functional data object of class
|
sd |
The standard deviation σ of the Gaussian white noise
that is added to the data. Defaults to |
An object of the same class as funDataObject
, which is a noisy
version of the original data.
oldPar <- par(no.readonly = TRUE) set.seed(1) # Univariate functional data plain <- simFunData(argvals = seq(0,1,0.01), M = 10, eFunType = "Fourier", eValType = "linear", N = 1)$simData noisy <- addError(plain , sd = 0.5) veryNoisy <- addError(plain, sd = 2) plot(plain, main = "Add error", ylim = range(veryNoisy@X)) plot(noisy, type = "p", pch = 20, add = TRUE) plot(veryNoisy, type = "p", pch = 4, add = TRUE) legend("topright", c("Plain", "Noisy", "Very Noisy"), lty = c(1, NA, NA), pch = c(NA, 20 ,4)) # Multivariate functional data plain <- simMultiFunData(type = "split", argvals = list(seq(0,1,0.01), seq(-.5,.5,0.02)), M = 10, eFunType = "Fourier", eValType = "linear", N = 1)$simData noisy <- addError(plain , sd = 0.5) veryNoisy <- addError(plain, sd = 2) par(mfrow = c(1,2)) plot(plain[[1]], main = "Add error (multivariate)", ylim = range(veryNoisy[[1]]@X)) plot(noisy[[1]], type = "p", pch = 20, add = TRUE) plot(veryNoisy[[1]], type = "p", pch = 4, add = TRUE) plot(plain[[2]], main = "Add error (multivariate)", ylim = range(veryNoisy[[2]]@X)) plot(noisy[[2]], type = "p", pch = 20, add = TRUE) plot(veryNoisy[[2]], type = "p", pch = 4, add = TRUE) legend("topright", c("Plain", "Noisy", "Very Noisy"), lty = c(1, NA, NA), pch = c(NA, 20 ,4)) par(oldPar)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.