Model-based clustering in the discriminative functional subspaces with the funFEM algorithm
The package provides the funFEM algorithm (Bouveyron et al., 2014) which allows to cluster functional data by modeling the curves within a common and discriminative functional subspace.
Package: | funFEM |
Type: | Package |
Version: | 1.0 |
Date: | 2014-09-06 |
License: | GPL-2 |
Charles Bouveyron
Maintainer: <charles.bouveyron@parisdescartes.fr>
C. Bouveyron, E. Côme and J. Jacques, The discriminative functional mixture model for the analysis of bike sharing systems, Preprint HAL n.01024186, University Paris Descartes, 2014.
# Clustering the well-known "Canadian temperature" data (Ramsay & Silverman) basis <- create.bspline.basis(c(0, 365), nbasis=21, norder=4) fdobj <- smooth.basis(day.5, CanadianWeather$dailyAv[,,"Temperature.C"],basis, fdnames=list("Day", "Station", "Deg C"))$fd res = funFEM(fdobj,K=4) # Visualization of the partition and the group means par(mfrow=c(1,2)) plot(fdobj,col=res$cls,lwd=2,lty=1) fdmeans = fdobj; fdmeans$coefs = t(res$prms$my) plot(fdmeans,col=1:max(res$cls),lwd=2)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.