Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

funFEM-package

Model-based clustering in the discriminative functional subspaces with the funFEM algorithm


Description

The package provides the funFEM algorithm (Bouveyron et al., 2014) which allows to cluster functional data by modeling the curves within a common and discriminative functional subspace.

Details

Package: funFEM
Type: Package
Version: 1.0
Date: 2014-09-06
License: GPL-2

Author(s)

Charles Bouveyron

Maintainer: <charles.bouveyron@parisdescartes.fr>

References

C. Bouveyron, E. Côme and J. Jacques, The discriminative functional mixture model for the analysis of bike sharing systems, Preprint HAL n.01024186, University Paris Descartes, 2014.

Examples

# Clustering the well-known "Canadian temperature" data (Ramsay & Silverman)
basis <- create.bspline.basis(c(0, 365), nbasis=21, norder=4)
fdobj <- smooth.basis(day.5, CanadianWeather$dailyAv[,,"Temperature.C"],basis,
        fdnames=list("Day", "Station", "Deg C"))$fd
res = funFEM(fdobj,K=4)

# Visualization of the partition and the group means
par(mfrow=c(1,2))
plot(fdobj,col=res$cls,lwd=2,lty=1)
fdmeans = fdobj; fdmeans$coefs = t(res$prms$my)
plot(fdmeans,col=1:max(res$cls),lwd=2)

funFEM

Clustering in the Discriminative Functional Subspace

v1.1
GPL-2
Authors
Charles Bouveyron
Initial release
2015-03-05

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.