The Delaporte distribution for fitting a GAMLSS model
The DEL()
function defines the Delaporte distribution, a three parameter discrete distribution, for a gamlss.family
object to be used
in GAMLSS fitting using the function gamlss()
.
The functions dDEL
, pDEL
, qDEL
and rDEL
define the density, distribution function, quantile function and random
generation for the Delaporte DEL()
, distribution.
DEL(mu.link = "log", sigma.link = "log", nu.link = "logit") dDEL(x, mu=1, sigma=1, nu=0.5, log=FALSE) pDEL(q, mu=1, sigma=1, nu=0.5, lower.tail = TRUE, log.p = FALSE) qDEL(p, mu=1, sigma=1, nu=0.5, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rDEL(n, mu=1, sigma=1, nu=0.5, max.value = 10000)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
x |
vector of (non-negative integer) quantiles |
mu |
vector of positive mu |
sigma |
vector of positive dispersion parameter |
nu |
vector of nu |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
log, log.p |
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
max.value |
a constant, set to the default value of 10000 for how far the algorithm should look for q |
The probability function of the Delaporte distribution is given by
f(y|mu,sigma,nu)=(exp(-mu*nu)/Gamma(1/sigma))*[1+mu*sigma*(1-nu)]^(-1/sigma) S
where
S=Sum(Per(y,j))*((mu^y)*(nu^{y-j})/y!) *[1+(1/(sigma*(1-nu)))]^j Gamma((1/sigma)*j)
for y=0,1,2,... where mu>0 , σ>0 and 0<nu<1. This distribution is a parametrization of the distribution given by Wimmer and Altmann (1999) p 515-516 where a=mu*nu, 1/sigma and p=[1+mu*nu*(1-nu)]^(-1)
Returns a gamlss.family
object which can be used to fit a Delaporte distribution in the gamlss()
function.
The mean of Y is given by E(Y)=mu and the variance by V(Y)=mu+mu^2*sigma*(1-nu)^2.
Rigby, R. A., Stasinopoulos D. M. and Marco Enea
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
Wimmer, G. and Altmann, G (1999). Thesaurus of univariate discrete probability distributions . Stamn Verlag, Essen, Germany
DEL()# gives information about the default links for the Delaporte distribution #plot the pdf using plot plot(function(y) dDEL(y, mu=10, sigma=1, nu=.5), from=0, to=100, n=100+1, type="h") # pdf # plot the cdf plot(seq(from=0,to=100),pDEL(seq(from=0,to=100), mu=10, sigma=1, nu=0.5), type="h") # cdf # generate random sample tN <- table(Ni <- rDEL(100, mu=10, sigma=1, nu=0.5)) r <- barplot(tN, col='lightblue') # fit a model to the data # libary(gamlss) # gamlss(Ni~1,family=DEL, control=gamlss.control(n.cyc=50))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.