Generalized Inverse Gaussian distribution for fitting a GAMLSS
The function GIG defines the generalized inverse gaussian distribution, a three parameter distribution,
for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
.
The functions DIG
, pGIG
, GIG
and rGIG
define the density,
distribution function, quantile function and random generation for the specific parameterization
of the generalized inverse gaussian distribution defined by function GIG.
GIG(mu.link = "log", sigma.link = "log", nu.link = "identity") dGIG(x, mu=1, sigma=1, nu=1, log = FALSE) pGIG(q, mu=1, sigma=1, nu=1, lower.tail = TRUE, log.p = FALSE) qGIG(p, mu=1, sigma=1, nu=1, lower.tail = TRUE, log.p = FALSE) rGIG(n, mu=1, sigma=1, nu=1, ...)
mu.link |
Defines the mu.link, with "log" link as the default for the |
sigma.link |
Defines the sigma.link, with "log" link as the default for the |
nu.link |
Defines the nu.link, with "identity" link as the default for the |
x,q |
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
nu |
vector of shape parameter values |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities |
n |
number of observations. If length(n) > 1, the length is taken to be the number required |
... |
for extra arguments |
The specific parameterization of the generalized inverse gaussian distribution used in GIG is f(y|mu,sigma,nu)=((c/mu)^nu)*(y^(nu-1))/(2*besselK(1/sigma,nu))*exp(-1/(2*sigma)*(c*y/mu+mu/(c*y))) where c = besselK(1/sigma,nu+1)/besselK(1/sigma,nu), for y>0, mu>0, sigma>0 and -Inf>nu>Inf.
GIG() returns a gamlss.family object which can be used to fit a generalized inverse gaussian distribution in the gamlss() function. DIG() gives the density, pGIG() gives the distribution function, GIG() gives the quantile function, and rGIG() generates random deviates.
Mikis Stasinopoulos, Bob Rigby and Nicoleta Motpan
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
Jorgensen B. (1982) Statistical properties of the generalized inverse Gaussian distribution, Series: Lecture notes in statistics; 9, New York : Springer-Verlag.
y<-rGIG(100,mu=1,sigma=1, nu=-0.5) # generates 1000 random observations hist(y) # library(gamlss) # histDist(y, family=GIG)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.