Logarithmic and zero adjusted logarithmic distributions for fitting a GAMLSS model
The function LG
defines the logarithmic distribution, a one parameter distribution, for a gamlss.family
object to be
used in GAMLSS fitting using the function gamlss()
. The functions dLG
, pLG
, qLG
and rLG
define the
density, distribution function, quantile function
and random generation for the logarithmic , LG()
, distribution.
The function ZALG
defines the zero adjusted logarithmic distribution, a two parameter distribution, for a gamlss.family
object to be
used in GAMLSS fitting using the function gamlss()
. The functions dZALG
, pZALG
, qZALG
and rZALG
define the
density, distribution function, quantile function
and random generation for the inflated logarithmic , ZALG()
, distribution.
LG(mu.link = "logit") dLG(x, mu = 0.5, log = FALSE) pLG(q, mu = 0.5, lower.tail = TRUE, log.p = FALSE) qLG(p, mu = 0.5, lower.tail = TRUE, log.p = FALSE, max.value = 10000) rLG(n, mu = 0.5) ZALG(mu.link = "logit", sigma.link = "logit") dZALG(x, mu = 0.5, sigma = 0.1, log = FALSE) pZALG(q, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE) qZALG(p, mu = 0.5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE) rZALG(n, mu = 0.5, sigma = 0.1)
mu.link |
defines the |
sigma.link |
defines the |
x |
vector of (non-negative integer) |
mu |
vector of positive means |
sigma |
vector of probabilities at zero |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
log, log.p |
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
max.value |
valued needed for the numerical calculation of the q-function |
For the definition of the distributions see Rigby and Stasinopoulos (2010) below.
The parameterization of the logarithmic distribution in the function LM
is
f(y|mu) = α μ^y / y
where for y>=1 and μ>0 and
α= [log(1-μ)]^{-1}
The function LG
and ZALG
return a gamlss.family
object which can be used to fit a
logarithmic and a zero inflated logarithmic distributions respectively in the gamlss()
function.
Mikis Stasinopoulos, Bob Rigby
Johnson, Norman Lloyd; Kemp, Adrienne W; Kotz, Samuel (2005). "Chapter 7: Logarithmic and Lagrangian distributions". Univariate discrete distributions (3 ed.). John Wiley & Sons. ISBN 9780471272465.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07.
Rigby, R. A. and Stasinopoulos D. M. (2010) The gamlss.family distributions, (distributed with this package or see https://www.gamlss.com/)
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
LG() ZAP() # creating data and plotting them dat <- rLG(1000, mu=.3) r <- barplot(table(dat), col='lightblue') dat1 <- rZALG(1000, mu=.3, sigma=.1) r1 <- barplot(table(dat1), col='lightblue')
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.