Logit Normal distribution for fitting in GAMLSS
The functions dLOGITNO
, pLOGITNO
, qLOGITNO
and rLOGITNO
define the density, distribution function, quantile function and random
generation for the logit-normal distribution.
The function LOGITNO
can be used for fitting the distribution in gamlss()
.
LOGITNO(mu.link = "logit", sigma.link = "log") dLOGITNO(x, mu = 0.5, sigma = 1, log = FALSE) pLOGITNO(q, mu = 0.5, sigma = 1, lower.tail = TRUE, log.p = FALSE) qLOGITNO(p, mu = 0.5, sigma = 1, lower.tail = TRUE, log.p = FALSE) rLOGITNO(n, mu = 0.5, sigma = 1)
mu.link |
the link function for mu |
sigma.link |
the link function for sigma |
x,q |
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
The probability density function in LOGITNO
is defined as
f(y|mu,sigma)=(1/(y*(1-y)*sqrt(2*pi)*sigma))*exp(-0.5*((log(y/(1-y))-log(mu/(1-mu))/(sigma))^2)
for 0<y>1, mu=(0,1) and σ>0.
LOGITNO()
returns a gamlss.family
object which can be used to fit a logit-normal distribution in the gamlss()
function.
Mikis Stasinopoulos, Bob Rigby
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
# plotting the d, p, q, and r functions op<-par(mfrow=c(2,2)) curve(dLOGITNO(x), 0, 1) curve(pLOGITNO(x), 0, 1) curve(qLOGITNO(x), 0, 1) Y<- rLOGITNO(200) hist(Y) par(op) # plotting the d, p, q, and r functions # sigma 3 op<-par(mfrow=c(2,2)) curve(dLOGITNO(x, sigma=3), 0, 1) curve(pLOGITNO(x, sigma=3), 0, 1) curve(qLOGITNO(x, sigma=3), 0, 1) Y<- rLOGITNO(200, sigma=3) hist(Y) par(op)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.