Negative Binomial type I distribution for fitting a GAMLSS
The NBI()
function defines the Negative Binomial type I distribution, a two parameter distribution, for a gamlss.family
object to be used
in GAMLSS fitting using the function gamlss()
.
The functions dNBI
, pNBI
, qNBI
and rNBI
define the density, distribution function, quantile function and random
generation for the Negative Binomial type I, NBI()
, distribution.
NBI(mu.link = "log", sigma.link = "log") dNBI(x, mu = 1, sigma = 1, log = FALSE) pNBI(q, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) qNBI(p, mu = 1, sigma = 1, lower.tail = TRUE, log.p = FALSE) rNBI(n, mu = 1, sigma = 1)
mu.link |
Defines the |
sigma.link |
Defines the |
x |
vector of (non-negative integer) quantiles |
mu |
vector of positive means |
sigma |
vector of positive despersion parameter |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
log, log.p |
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
Definition file for Negative Binomial type I distribution.
P(Y=y|μ, σ)= Γ(y+1/σ)/Γ(1/σ) Γ(y+1) ((σ μ)/ (1+σ μ))^y(1/(1+σ μ))^{1/σ}
for y=0,1,2, ...,Inf, μ>0 and σ>0. This parameterization is equivalent to that used by Anscombe (1950) except he used alpha=1/sigma instead of sigma.
returns a gamlss.family
object which can be used to fit a Negative Binomial type I distribution in the gamlss()
function.
For values of sigma<0.0001 the d,p,q,r functions switch to the Poisson distribution
mu is the mean and (mu+sigma*mu^2)^0.5 is the standard deviation of the Negative Binomial type I distribution (so sigma is the dispersion parameter in the usual GLM for the negative binomial type I distribution)
Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou
Anscombe, F. J. (1950) Sampling theory of the negative bimomial and logarithmic distributiona, Biometrika, 37, 358-382.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
gamlss.family
, NBII
, PIG
, SI
NBI() # gives information about the default links for the Negative Binomial type I distribution # plotting the distribution plot(function(y) dNBI(y, mu = 10, sigma = 0.5 ), from=0, to=40, n=40+1, type="h") # creating random variables and plot them tN <- table(Ni <- rNBI(1000, mu=5, sigma=0.5)) r <- barplot(tN, col='lightblue') # library(gamlss) # data(aids) # h<-gamlss(y~cs(x,df=7)+qrt, family=NBI, data=aids) # fits the model # plot(h) # pdf.plot(family=NBI, mu=10, sigma=0.5, min=0, max=40, step=1)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.