Normal distribution for fitting a GAMLSS
The function NO()
defines the normal distribution, a two parameter distribution, for a
gamlss.family
object to be used in GAMLSS fitting
using the function gamlss()
, with mean equal to the parameter mu
and sigma
equal the standard deviation.
The functions dNO
, pNO
, qNO
and rNO
define the density, distribution function, quantile function and random
generation for the NO
parameterization of the normal distribution.
[A alternative parameterization with sigma
equal to the variance is given in the function NO2()
]
NO(mu.link = "identity", sigma.link = "log") dNO(x, mu = 0, sigma = 1, log = FALSE) pNO(q, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) qNO(p, mu = 0, sigma = 1, lower.tail = TRUE, log.p = FALSE) rNO(n, mu = 0, sigma = 1)
mu.link |
Defines the |
sigma.link |
Defines the |
x,q |
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
The parametrization of the normal distribution given in the function NO()
is
f(y|mu,sigma)=(1/(sqrt(2*pi)*sigma))* exp(-0.5*((y-mu)/sigma)^2)
for y=(-Inf,+Inf), μ=(-Inf,+Inf) and σ>0.
returns a gamlss.family
object which can be used to fit a normal distribution in the gamlss()
function.
For the function NO()
, mu is the mean and sigma is the standard deviation (not the variance) of the normal distribution.
Mikis Stasinopoulos, Bob Rigby and Calliope Akantziliotou
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
NO()# gives information about the default links for the normal distribution plot(function(y) dNO(y, mu=10 ,sigma=2), 0, 20) plot(function(y) pNO(y, mu=10 ,sigma=2), 0, 20) plot(function(y) qNO(y, mu=10 ,sigma=2), 0, 1) dat<-rNO(100) hist(dat) # library(gamlss) # gamlss(dat~1,family=NO) # fits a constant for mu and sigma
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.