Pareto distributions for fitting in GAMLSS
The functions PARETO()
defines the one parameter Pareto distribution for y>1
.
The functions PARETO1()
defines the one parameter Pareto distribution for y>0
.
The functions PARETOo1()
defines the one parameter Pareto distribution for y>mu
therefor requires mu
to be fixed.
The functions PARETO2()
and PARETO2o()
define the Pareto Type 2 distribution, for y>0
, a two parameter distribution, for a gamlss.family
object to be used in GAMLSS fitting using the function gamlss()
.
The parameters are mu
and sigma
in both functions but the parameterasation different. The mu
is identical for both PARETO2()
and PARETO2o()
. The sigma
in PARETO2o()
is the inverse of the sigma
in codePARETO2() and coresponse to the usual parameter alpha
of the Patreto distribution. The functions dPARETO2
, pPARETO2
, qPARETO2
and rPARETO2
define the density, distribution function, quantile function and random generation for the PARETO2
parameterization of the Pareto type 2 distribution while the functions dPARETO2o
, pPARETO2o
, qPARETO2o
and rPARETO2o
define the density, distribution function, quantile function and random generation for the original PARETO2o
parameterization of the Pareto type 2 distribution
PARETO(mu.link = "log") dPARETO(x, mu = 1, log = FALSE) pPARETO(q, mu = 1, lower.tail = TRUE, log.p = FALSE) qPARETO(p, mu = 1, lower.tail = TRUE, log.p = FALSE) rPARETO(n, mu = 1) PARETO1(mu.link = "log") dPARETO1(x, mu = 1, log = FALSE) pPARETO1(q, mu = 1, lower.tail = TRUE, log.p = FALSE) qPARETO1(p, mu = 1, lower.tail = TRUE, log.p = FALSE) rPARETO1(n, mu = 1) PARETO1o(mu.link = "log", sigma.link = "log") dPARETO1o(x, mu = 1, sigma = 0.5, log = FALSE) pPARETO1o(q, mu = 1, sigma = 0.5, lower.tail = TRUE, log.p = FALSE) qPARETO1o(p, mu = 1, sigma = 0.5, lower.tail = TRUE, log.p = FALSE) rPARETO1o(n, mu = 1, sigma = 0.5) PARETO2(mu.link = "log", sigma.link = "log") dPARETO2(x, mu = 1, sigma = 0.5, log = FALSE) pPARETO2(q, mu = 1, sigma = 0.5, lower.tail = TRUE, log.p = FALSE) qPARETO2(p, mu = 1, sigma = 0.5, lower.tail = TRUE, log.p = FALSE) rPARETO2(n, mu = 1, sigma = 0.5) PARETO2o(mu.link = "log", sigma.link = "log") dPARETO2o(x, mu = 1, sigma = 0.5, log = FALSE) pPARETO2o(q, mu = 1, sigma = 0.5, lower.tail = TRUE, log.p = FALSE) qPARETO2o(p, mu = 1, sigma = 0.5, lower.tail = TRUE, log.p = FALSE) rPARETO2o(n, mu = 1, sigma = 0.5)
mu.link |
Defines the |
sigma.link |
Defines the |
x, q |
vector of quantiles |
mu |
vector of location parameter values |
sigma |
vector of scale parameter values |
log, log.p |
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise P[X > x] |
p |
vector of probabilities |
n |
number of observations. If |
The parameterization of the one parameter Pareto distribution in the function PARETO
is:
f(y|mu) = (mu) y^(mu+1)
for y>1 and mu>0.
The parameterization of the Pareto Type 2 distribution in the function PARETO2
is:
f(y | mu, sigma) = (1/sigma) mu^(1/sigma) (y+mu)^(-(1/sigma+1))
for y>=0, mu>0 and sigma>0.
returns a gamlss.family object which can be used to fit a Pareto type 2 distribution in the gamlss()
function.
Fiona McElduff, Bob Rigby and Mikis Stasinopoulos
Johnson, N., Kotz, S., and Balakrishnan, N. (1997). Discrete Multivariate Distributions. Wiley-Interscience, NY, USA.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
par(mfrow=c(2,2)) y<-seq(0.2,20,0.2) plot(y, dPARETO2(y), type="l" , lwd=2) q<-seq(0,20,0.2) plot(q, pPARETO2(q), ylim=c(0,1), type="l", lwd=2) p<-seq(0.0001,0.999,0.05) plot(p, qPARETO2(p), type="l", lwd=2) dat <- rPARETO2(100) hist(rPARETO2(100), nclass=30) #summary(gamlss(a~1, family="PARETO2"))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.