The skew t distributions, type 1 to 5
There are 5 different skew t distributions implemented in GAMLSS.
The Skew t type 1 distribution, ST1
, is based on Azzalini (1986).
The skew t type 2 distribution, ST2
, is based on Azzalini and Capitanio (2003).
The skew t type 3 , ST3
and ST3C
, distribution is based Fernande and Steel (1998).
The difference betwwen the ST3
and ST3C
is that the first is written entirely in R
while
the second is in C
.
The skew t type 4 distribution , ST4
, is a spliced-shape distribution.
The skew t type 5 distribution , ST5
, is Jones and Faddy (2003).
The SST
is a reparametrised version of dST3
where sigma
is the standard deviation of the distribution.
ST1(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link="log") dST1(x, mu = 0, sigma = 1, nu = 0, tau = 2, log = FALSE) pST1(q, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE) qST1(p, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE) rST1(n, mu = 0, sigma = 1, nu = 0, tau = 2) ST2(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log") dST2(x, mu = 0, sigma = 1, nu = 0, tau = 2, log = FALSE) pST2(q, mu = 0, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE) qST2(p, mu = 1, sigma = 1, nu = 0, tau = 2, lower.tail = TRUE, log.p = FALSE) rST2(n, mu = 0, sigma = 1, nu = 0, tau = 2) ST3(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "log") dST3(x, mu = 0, sigma = 1, nu = 1, tau = 10, log = FALSE) pST3(q, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE) qST3(p, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE) rST3(n, mu = 0, sigma = 1, nu = 1, tau = 10) ST3C(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "log") dST3C(x, mu = 0, sigma = 1, nu = 1, tau = 10, log = FALSE) pST3C(q, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE) qST3C(p, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE) rST3C(n, mu = 0, sigma = 1, nu = 1, tau = 10) SST(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "logshiftto2") dSST(x, mu = 0, sigma = 1, nu = 0.8, tau = 7, log = FALSE) pSST(q, mu = 0, sigma = 1, nu = 0.8, tau = 7, lower.tail = TRUE, log.p = FALSE) qSST(p, mu = 0, sigma = 1, nu = 0.8, tau = 7, lower.tail = TRUE, log.p = FALSE) rSST(n, mu = 0, sigma = 1, nu = 0.8, tau = 7) ST4(mu.link = "identity", sigma.link = "log", nu.link = "log", tau.link = "log") dST4(x, mu = 0, sigma = 1, nu = 1, tau = 10, log = FALSE) pST4(q, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE) qST4(p, mu = 0, sigma = 1, nu = 1, tau = 10, lower.tail = TRUE, log.p = FALSE) rST4(n, mu = 0, sigma = 1, nu = 1, tau = 10) ST5(mu.link = "identity", sigma.link = "log", nu.link = "identity", tau.link = "log") dST5(x, mu = 0, sigma = 1, nu = 0, tau = 1, log = FALSE) pST5(q, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE, log.p = FALSE) qST5(p, mu = 0, sigma = 1, nu = 0, tau = 1, lower.tail = TRUE, log.p = FALSE) rST5(n, mu = 0, sigma = 1, nu = 0, tau = 1)
mu.link |
Defines the |
sigma.link |
Defines the |
nu.link |
Defines the |
tau.link |
Defines the |
x,q |
vector of quantiles |
mu |
vector of |
sigma |
vector of scale parameter values |
nu |
vector of |
tau |
vector of |
log, log.p |
logical; if TRUE, probabilities p are given as log(p). |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
p |
vector of probabilities. |
n |
number of observations. If |
f(y|mu,sigma,nu,tau)=z/sigma f_z1(z)F_z2(w)
for -Inf<y<Inf, where z=(y-mu)/sigma, w=nu*sqrt(lambda)*z, lambda=(tau+1)/(tau+z*z) and z_1 ~ TF(01,1,tau) and z_2 ~ TF(0,1,tau+1).
The probability density function of the skew t distribution type q, (ST3
), is defined in Chapter 10 of the
GAMLSS manual.
The probability density function of the skew t distribution type q, (ST4
), is defined in Chapter of the
GAMLSS manual.
The probability density function of the skew t distribution type 5, (ST5
), is defined as
f(y|mu,sigma,nu,tau)=(1/c)*(1+(z/(a+b+z^2)^0.5))^(a+0.5)*(1-(a+b+z^2)^0.5)^(b+0.5)
where c=2^(a+b-1)*(a+b)^0.5 *B(a,b), and Gamma(a)*Gamma(b)/Gamma(a+b) and (y-mu)/sigma and nu=(a-b)/(a*b*(a+b))^0.5 and tau=2/(a+b) for -Inf<y<Inf, -Inf<mu<Inf, σ>0, -Inf<nu<Inf and tau>0.
The functions ST1()
, ST2()
, ST3()
, ST4()
and ST5()
return a gamlss.family
object
which can be used to fit the skew t type 1-5 distribution in the gamlss()
function.
The functions dST1()
, dST2()
, dST3()
, dST4()
and dST5()
give the density functions.
The funcions pST1()
, pST2()
, pST3()
, pST4()
and pST5()
give the cumulative distribution functions.
The functions qST1()
, qST2()
, qST3()
, qST4()
and qST5()
give the quantile function, and
rST1()
, rST2()
, rST3()
, rST4()
and rST3()
generates random deviates.
The mean of the ex-Gaussian is mu+nu and the variance is sigma^2+nu^2.
Bob Rigby and Mikis Stasinopoulos
Azzalini A. (1986) Futher results on a class of distributions which includes the normal ones, Statistica, 46, pp. 199-208.
Azzalini A. and Capitanio, A. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 65, pp. 367-389.
Jones, M.C. and Faddy, M. J. (2003) A skew extension of the t distribution, with applications. Journal of the Royal Statistical Society, Series B, 65, pp 159-174.
Fernandez, C. and Steel, M. F. (1998) On Bayesian modeling of fat tails and skewness. Journal of the American Statistical Association, 93, pp. 359-371.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07.
y<- rST5(200, mu=5, sigma=1, nu=.1) hist(y) curve(dST5(x, mu=30 ,sigma=5,nu=-1), -50, 50, main = "The ST5 density mu=30 ,sigma=5,nu=1") # library(gamlss) # m1<-gamlss(y~1, family=ST1) # m2<-gamlss(y~1, family=ST2) # m3<-gamlss(y~1, family=ST3) # m4<-gamlss(y~1, family=ST4) # m5<-gamlss(y~1, family=ST5) # GAIC(m1,m2,m3,m4,m5)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.