Zero inflated poisson distribution for fitting a GAMLSS model
The function ZIP2
defines the zero inflated Poisson type 2 distribution, a two parameter distribution, for a gamlss.family
object to be used in GAMLSS fitting
using the function gamlss()
. The functions dZIP2
, pZIP2
, qZIP2
and rZIP2
define the density, distribution function, quantile function
and random generation for the inflated poisson, ZIP2()
, distribution.
The ZIP2 is a different parameterization of the ZIP distribution. In the ZIP2 the mu
is the mean of the distribution.
ZIP2(mu.link = "log", sigma.link = "logit") dZIP2(x, mu = 5, sigma = 0.1, log = FALSE) pZIP2(q, mu = 5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE) qZIP2(p, mu = 5, sigma = 0.1, lower.tail = TRUE, log.p = FALSE) rZIP2(n, mu = 5, sigma = 0.1)
mu.link |
defines the |
sigma.link |
defines the |
x |
vector of (non-negative integer) quantiles |
mu |
vector of positive means |
sigma |
vector of probabilities at zero |
p |
vector of probabilities |
q |
vector of quantiles |
n |
number of random values to return |
log, log.p |
logical; if TRUE, probabilities p are given as log(p) |
lower.tail |
logical; if TRUE (default), probabilities are P[X <= x], otherwise, P[X > x] |
Let Y=0 with probability σ and Po(mu/(1-sigma)) with probability (1-σ) then Y has a Zero inflated Poisson type 2 distribution given by
sigma+(1-sigma)e^(-(mu/(1-sigma))) if y=0
f(y)=(1-sigma)exp(-(mu/(1-sigma)))* (mu/(1-sigma))^y/y! if y=0,1,2,...
The mean of the distribution in this parameterization is mu
.
returns a gamlss.family
object which can be used to fit a zero inflated poisson distribution in the gamlss()
function.
Bob Rigby, Gillian Heller and Mikis Stasinopoulos
Lambert, D. (1992), Zero-inflated Poisson Regression with an application to defects in Manufacturing, Technometrics, 34, pp 1-14.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
ZIP2()# gives information about the default links for the normal distribution # creating data and plotting them dat<-rZIP2(1000, mu=5, sigma=.1) r <- barplot(table(dat), col='lightblue') # fit the disteibution # library(gamlss) # mod1<-gamlss(dat~1, family=ZIP2)# fits a constant for mu and sigma # fitted(mod1)[1] # fitted(mod1,"sigma")[1]
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.