Plotting the Profile Deviance for one of the Parameters in a GAMLSS model
This functions plots the profile deviance of one of the (four) parameters in a GAMLSS model. It can be used if one
of the parameters mu
, sigma
, nu
or tau
is a constant (not a function of explanatory variables) to obtain
a profile confidence intervals.
prof.dev(object, which = NULL, min = NULL, max = NULL, step = NULL, length = 7, startlastfit = TRUE, plot = TRUE, perc = 95, col="darkgreen")
object |
A fitted GAMLSS model |
which |
which parameter to get the profile deviance e.g. |
min |
the minimum value for the parameter e.g. |
max |
the maximum value for the parameter e.g. |
step |
how often to evaluate the global deviance (defines the step length of the grid for the parameter) e.g. |
length |
the length if step is not set, default equal 7 |
startlastfit |
whether to start fitting from the last fit or not, default value is |
plot |
whether to plot, |
perc |
what % confidence interval is required |
col |
The colour of the profile line |
This function can be use to provide likelihood based confidence intervals for a parameter for which a constant model (i.e. no explanatory model) is fitted and
consequently for checking the adequacy of a particular values of the parameter. This can be used to check the adequacy of one distribution (e.g. Box-Cox Cole and Green)
nested within another (e.g. Box-Cox power exponential). For example one can test whether a Box-Cox Cole and Green (Box-Cox-normal) distribution
or a Box-Cox power exponential is appropriate by plotting the profile of the parameter tau
.
A profile deviance showing support for tau=2
indicates adequacy of the Box-Cox Cole and Green (i.e. Box-Cox normal) distribution.
Return a profile plot (if the argument plot=TRUE
) and an ProfLikelihood.gamlss
object if saved. The object contains:
values |
the values at the grid where the parameter was evaluated |
fun |
the function which approximates the points using splines |
min |
the minimum values in the grid |
max |
te maximum values in the grid |
max.value |
the value of the parameter maximising the Profile deviance (or GAIC) |
CI |
the profile confidence interval (if global deviance is used) |
criterion |
which criterion was used |
A dense grid (i.e. small step) evaluation of the global deviance can take a long time, so start with a sparse grid (i.e. large step) and decrease gradually the step length for more accuracy.
Calliope Akantziliotou, Mikis Stasinopoulos d.stasinopoulos@londonmet.ac.uk and Bob Rigby
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
(see also https://www.gamlss.com/).
## Not run: data(abdom) h<-gamlss(y~pb(x), sigma.formula=~pb(x), family=BCT, data=abdom) prof.dev(h,"nu",min=-2.000,max=2) rm(h) ## End(Not run)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.