Robust Variance-Covariance matrix of the parameters from a fitted GAMLSS model
The function rvcov()
is design for providing robust standard errors for the parameters estimates of a GAMLSS fitted model. The same result can be achieved by using vcov(fitted_model,robust=TRUE)
. The function get.()
gets the K matrix (see details below).
rvcov(object, type = c("vcov", "cor", "se", "coef", "all"), hessian.fun = c("R", "PB") ) get.K(object, what = c("K", "Deriv"))
object |
a GAMLSS fitted object |
type |
this argument for |
what |
this an argument for the function |
hessian.fun |
How to obtain numerically the Hessian i) using |
The robust standard errors are calculated for the robust sandwich estimator of the variance-covariance given by S=VKV where V is the standard variance-covariance matrix (the inverse of the information matrix) and K is an estimate of the variance of he first derivatives of he likelihood. The function get.K()
is use the get the required K matrix.
A variance covariance matrix or other relevant output
Mikis Stasinopoulos d.stasinopoulos@londonmet.ac.uk, Bob Rigby and Vlasios Voudouris
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
(see also https://www.gamlss.com/).
vcov
, ~~~
# gererate from a gamma distribution Y <- rGA(200, mu=1, sigma=2) hist(Y) # fitting the wrong model i.e. sigma=1 m1 <- gamlss(Y~1, family=EXP) # the conventinal se is too precise vcov(m1, type="se") # the sandwich se is wider rvcov(m1, type="se") # fitting the correct model m2 <- gamlss(Y~1, family=GA) vcov(m2, type="se") rvcov(m2, type="se") # similar stadard errors # also obtained using vcov(m2, type="se", robust=TRUE)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.