Probability of passage
Calculates for each cell the number of passages of a random-walk or randomised shortest paths with given origin(s) and destination(s). Either the total or the net number of passages can be calculated. In the case of multiple origins or destinations, each receives equal weight.
passage(x, origin, goal, theta, ...)
x |
Object of class |
origin |
|
goal |
|
theta |
If zero or missing, a random walk results. If a numeric value 0 < theta < 20 is given, randomised shortest paths are calculated; theta is the degree from which the path randomly deviates from the shortest path |
... |
Additional arguments: totalNet ("total" or "net"), and output ("RasterLayer" or "Transition") |
The net number of passages between i and j is defined as: abs( passages from i to j - passages from j to i ).
Defaults for additional argument totalNet
is "net"
and for output
it is "RasterLayer".
Random walk requires a symmetric transition matrix.
RasterLayer or Transition object, depending on the output argument
Jacob van Etten. Implementation of randomised shortest paths based on Matlab code by Marco Saerens
McRae B.H., B.G. Dickson, and T. Keitt. 2008. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89:2712-2724.
Saerens M., L. Yen, F. Fouss, and Y. Achbany. 2009. Randomized shortest-path problems: two related models. Neural Computation, 21(8):2363-2404.
#create a new raster and set all its values to unity. raster <- raster(nrows=18, ncols=36) raster <- setValues(raster,rep(1,ncell(raster))) #create a Transition object from the raster tr <- transition(raster,mean,4) trC <- geoCorrection(tr, type="c", scl=TRUE) trR <- geoCorrection(tr, type="r", scl=TRUE) #create two coordinates sP1 <- SpatialPoints(cbind(-105,55)) sP2 <- SpatialPoints(cbind(105,-55)) #randomised shortest paths with theta = 2 rSPraster <- passage(trC, sP1, sP2, 2) plot(rSPraster) points(sP1) points(sP2) #randomised shortest paths with theta = 0.05 rSPraster <- passage(trC, sP1, sP2, 0.05) plot(rSPraster) points(sP1) points(sP2) #randomised shortest paths with theta = 0.05 #and total rSPraster <- passage(trC, sP1, sP2, 0.05, totalNet = "total") plot(rSPraster) points(sP1) points(sP2) #random walk rwraster <- passage(trR, sP1, sP2) plot(rwraster) points(sP1) points(sP2)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.