Marginal distribution of a single correlation from an LKJ distribution
Marginal distribution for the correlation in a single cell from a correlation matrix distributed according to an LKJ distribution.
dlkjcorr_marginal(x, K, eta, log = FALSE) plkjcorr_marginal(q, K, eta, lower.tail = TRUE, log.p = FALSE) qlkjcorr_marginal(p, K, eta, lower.tail = TRUE, log.p = FALSE) rlkjcorr_marginal(n, K, eta)
x |
vector of quantiles. |
K |
Dimension of the correlation matrix. Must be greater than or equal to 2. |
eta |
Parameter controlling the shape of the distribution |
log |
logical; if TRUE, probabilities p are given as log(p). |
q |
vector of quantiles. |
lower.tail |
logical; if TRUE (default), probabilities are P[X ≤ x] otherwise, P[X > x]. |
log.p |
logical; if TRUE, probabilities p are given as log(p). |
p |
vector of probabilities. |
n |
number of observations. If |
The LKJ distribution is a distribution over correlation matrices with a single parameter, eta. For a given eta and a KxK correlation matrix R:
R ~ LKJ(eta)
Each off-diagonal entry of R, r[i,j]: i != j, has the following marginal distribution (Lewandowski, Kurowicka, and Joe 2009):
(r[i,j] + 1)/2 ~ Beta(eta - 1 + K/2, eta - 1 + K/2)
In other words, r[i,j] is marginally distributed according to the above Beta distribution scaled into (-1,1).
dlkjcorr_marginal
gives the density
plkjcorr_marginal
gives the cumulative distribution function (CDF)
qlkjcorr_marginal
gives the quantile function (inverse CDF)
rlkjcorr_marginal
generates random draws.
The length of the result is determined by n
for rlkjcorr_marginal
, and is the maximum of the lengths of
the numerical arguments for the other functions.
The numerical arguments other than n
are recycled to the length of the result. Only the first elements
of the logical arguments are used.
Lewandowski, D., Kurowicka, D., & Joe, H. (2009). Generating random correlation matrices based on vines and extended onion method. Journal of Multivariate Analysis, 100(9), 1989–2001. doi: 10.1016/j.jmva.2009.04.008.
parse_dist()
and marginalize_lkjcorr()
for parsing specs that use the
LKJ correlation distribution and the stat_dist_slabinterval()
family of stats for visualizing them.
library(dplyr) library(ggplot2) library(forcats) theme_set(theme_ggdist()) expand.grid( eta = 1:6, K = 2:6 ) %>% ggplot(aes(y = fct_rev(ordered(eta)), dist = "lkjcorr_marginal", arg1 = K, arg2 = eta)) + stat_dist_slab() + facet_grid(~ paste0(K, "x", K)) + labs( title = paste0( "Marginal correlation for LKJ(eta) prior on different matrix sizes:\n", "dlkjcorr_marginal(K, eta)" ), subtitle = "Correlation matrix size (KxK)", y = "eta", x = "Marginal correlation" ) + theme(axis.title = element_text(hjust = 0))
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.