Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

binve

Inverts a marginal log-linear parametrization


Description

Inverts a marginal log-linear parametrization.

Usage

binve(eta, C, M, G, maxit = 500, print = FALSE, tol = 1e-10)

Arguments

eta

a vector of dimension t-1 where t is the number of cells of a contingency table.

C

A contrast matrix.

M

A marginalization matrix.

G

G is the model matrix of the loglinear parameterization with no constant term.

maxit

an integer, specifying the maximum number of iterations. Default 500.

print

a logical value: if TRUE, prints the criterion after each cycle.

tol

A small value specifying the tolerance for the convergence criterion. Default: 1e-10.

Details

A marginal log-linear link is defined by η = C (M \log p). See Bartolucci et al. (2007).

Value

A vector of probabilities p.

Note

From a Matlab function by A. Forcina, University of Perugia, Italy.

Author(s)

Antonio Forcina, Giovanni M. Marchetti

References

Bartolucci, F., Colombi, R. and Forcina, A. (2007). An extended class of marginal link functions for modelling contingency tables by equality and inequality constraints. Statist. Sinica 17, 691-711.

See Also


ggm

Graphical Markov Models with Mixed Graphs

v2.5
GPL-2
Authors
Giovanni M. Marchetti, Mathias Drton, Kayvan Sadeghi
Initial release
2020-02-014

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.