Become an expert in R — Interactive courses, Cheat Sheets, certificates and more!
Get Started for Free

StarshipClassDocs

Print (or summarise) the results of a starship estimation


Description

Print (or summarise) the results of a starship estimation of the parameters of the Generalised Lambda Distribution

Usage

## S3 method for class 'starship'
summary(object, ...)

## S3 method for class 'starship'
print(x, digits = max(3, getOption("digits") - 3), ...)

Arguments

x

An object of class starship.

object

An object of class starship.

digits

minimal number of significant digits, see print.default.

...

arguments passed to print

Details

summary Gives the details of the starship.adaptivegrid and optim steps.

Author(s)

Darren Wraith

References

Freimer, M., Mudholkar, G. S., Kollia, G. & Lin, C. T. (1988), A study of the generalized tukey lambda family, Communications in Statistics - Theory and Methods 17, 3547–3567.

Ramberg, J. S. & Schmeiser, B. W. (1974), An approximate method for generating asymmetric random variables, Communications of the ACM 17, 78–82.

King, R.A.R. & MacGillivray, H. L. (1999), A starship method for fitting the generalised lambda distributions, Australian and New Zealand Journal of Statistics 41, 353–374

Owen, D. B. (1988), The starship, Communications in Statistics - Computation and Simulation 17, 315–323.

See Also

Examples

data <- rgl(100,0,1,.2,.2)
starship.result <- starship(data,optim.method="Nelder-Mead",initgrid=list(lcvect=(0:4)/10,
ldvect=(0:4)/10))
print(starship.result)
summary(starship.result,estimation.details=TRUE)

gld

Estimation and Use of the Generalised (Tukey) Lambda Distribution

v2.6.2
GPL (>= 2)
Authors
Robert King <Robert.King@newcastle.edu.au>, Benjamin Dean <Benjamin.Dean@uon.edu.au>, Sigbert Klinke, Paul van Staden
Initial release
2020-01-07

We don't support your browser anymore

Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.