Compute likelihood profiles for a fitted model
Compute likelihood profiles for a fitted model
## S3 method for class 'glmmTMB' profile( fitted, parm = NULL, level_max = 0.99, npts = 8, stepfac = 1/4, stderr = NULL, trace = FALSE, parallel = c("no", "multicore", "snow"), ncpus = getOption("profile.ncpus", 1L), cl = NULL, ... ) ## S3 method for class 'profile.glmmTMB' confint(object, parm = NULL, level = 0.95, ...)
fitted |
a fitted |
parm |
which parameters to profile, specified
|
level_max |
maximum confidence interval target for profile |
npts |
target number of points in (each half of) the profile (approximate) |
stepfac |
initial step factor (fraction of estimated standard deviation) |
stderr |
standard errors to use as a scaling factor when picking step
sizes to compute the profile; by default (if |
trace |
print tracing information? If |
parallel |
method (if any) for parallel computation |
ncpus |
number of CPUs/cores to use for parallel computation |
cl |
cluster to use for parallel computation |
... |
additional arguments passed to |
object |
a fitted profile ( |
level |
confidence level |
Fits natural splines separately to the points from each half of the profile for each specified parameter (i.e., values above and below the MLE), then finds the inverse functions to estimate the endpoints of the confidence interval
An object of class profile.glmmTMB
, which is also a
data frame, with columns .par
(parameter being profiled),
.focal
(value of focal parameter), value (negative log-likelihood).
## Not run: m1 <- glmmTMB(count~ mined + (1|site), zi=~mined, family=poisson, data=Salamanders) salamander_prof1 <- profile(m1, parallel="multicore", ncpus=2, trace=1) ## testing salamander_prof1 <- profile(m1, trace=1,parm=1) salamander_prof1M <- profile(m1, trace=1,parm=1, npts = 4) salamander_prof2 <- profile(m1, parm="theta_") ## End(Not run) salamander_prof1 <- readRDS(system.file("example_files","salamander_prof1.rds",package="glmmTMB")) if (require("ggplot2")) { ggplot(salamander_prof1,aes(.focal,sqrt(value))) + geom_point() + geom_line()+ facet_wrap(~.par,scale="free_x")+ geom_hline(yintercept=1.96,linetype=2) } salamander_prof1 <- readRDS(system.file("example_files","salamander_prof1.rds",package="glmmTMB")) confint(salamander_prof1) confint(salamander_prof1,level=0.99)
Please choose more modern alternatives, such as Google Chrome or Mozilla Firefox.